

S3 Family 8-Bit Microcontrollers

S3F94C8/S3F94C4

Product Specification

PS031503-0115

PRELIMINARY

Copyright ©2015 Zilog[®], Inc. All rights reserved. www.zilog.com

ii

Warning: DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

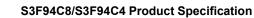
As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

Document Disclaimer

©2015 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this document has been verified according to the general principles of electrical and mechanical engineering.

S3 and Z8 are trademarks or registered trademarks of Zilog, Inc. All other product or service names are the property of their respective owners.



iii

Revision History

Each instance in this document's revision history reflects a change from its previous edition. For more details, refer to the corresponding page(s) or appropriate links furnished in the table below.

Date	Revision Level	Description	Page
Jan 2015	03	Updated the Third Parties for Development Tools section.	17-9
May 2014	02	Corrected R value in Figure 8-2 and following note to $40K\Omega$; entire document updated to include front matter, PDF bookmarks for easier navigation.	8-3
Aug 2013	01	Original Zilog issue.	All

Chip Handling Guide

Precaution Against Electrostatic Discharge

When handling semiconductor devices, be sure that the environment is protected against static electricity.

- 1. Operators should wear anti-static clothing and use earth band.
- 2. All objects that come in direct contact with devices should be made of materials that do not produce static electricity that would cause damage.
- 3. Equipment and work table must be earthed.
- 4. Ionizer is recommended to remove electron charge.

Contamination

Be sure to use semiconductor products in the environment that may not be exposed to dust or dirt adhesion.

Temperature/Humidity

Semiconductor devices are sensitive to environment temperature and humidity. High temperature or humidity may deteriorate semiconductor device's characteristics. Therefore avoid storage or use in such conditions.

Mechanical Shock

Care should be exercised not to apply excessive mechanical shock or force on semiconductor device.

Chemical

Do not expose semiconductor device to chemical because reaction to chemical may cause deterioration of device characteristics.

Light Protection

In case of non-EMC (Epoxy Molding Compound) package, do not expose semiconductor IC to strong light. It may cause device's malfunction. (But, some special products which utilize the light or have security function are excepted from this guide)

Radioactive, Cosmic and X-Ray

Semiconductor devices can be influenced by radioactive, cosmic ray or X-ray. Radioactive, cosmic and X-ray may cause soft error during device operation. Therefore semiconductor devices must be shielded under environment that may be exposed to radioactive, cosmic ray or X-ray.

Electromagnetic Susceptibility (EMS)

Note that semiconductor device's characteristics may be affected by strong electromagnetic wave or magnetic field during operation under insufficient PCB circuit design for EMS.

Table of Contents

Chip H	landling Guide	iv
List of	Figures	x
List of	Tables	xiii
1 Prod	luct Overview	
1.1	SAM88RCRI Microcontrollers	
1.2	S3F94C8/S3F94C4 Microcontroller	
1.3	Features	
1.4	Block Diagram	
1.5	Pin Assignments	
1.6	Pin Descriptions	
1.7	Pin Circuits	1-7
2 Addr	ess Spaces	2-1
2.1	Overview	2-1
2.2	Program Memory (ROM)	
	2.2.1 Normal Operating Mode	
2.3	Smart Option	
2.4	Register Architecture	
2.5	Common Working Register Area (C0H–CFH)	
2.6	System Stack	2-8
	2.6.1 Stack Operations	
	2.6.2 Stack Pointer (SP)	
3 Addr	essing Modes	3-1
3.1	Overview	
3.2	Register Addressing Mode (R)	
3.3	Indirect Register Addressing Mode (IR)	
3.4	Indexed Addressing Mode (X)	
3.5	Direct Address Mode (DA)	
3.6	Relative Address Mode (RA)	
3.7	Immediate Mode (IM)	3-12
4 Cont	trol Registers	
4.1	Overview	
	4.1.1 ADCON — A/D Converter Control Register (F7H)	
	4.1.2 BTCON — Basic Timer Control Register (DCH)	
	4.1.3 CLKCON — Clock Control Register (D4H) 4.1.4 FLAGS — System Flags Register (D5H)	
	4.1.5 FMCON — Flash Memory Control Register (ECH)	
	4.1.6 FMSECH — Flash Memory Sector Address High Byte Register (EEH)	
	 4.1.7 FMSECL — Flash Memory Sector Address Low Byte Register (EFH) 4.1.8 FMUSR — Flash Memory User Programming Enable Register (EDH) 	
	4.1.9 POCONH — Port 0 Control High Byte Register (E6H)	
	4.1.10 P0CONL — Port 0 Control Low Byte Register (E7H)	
	4.1.11 P0PND — Port 0 Interrupt Pending Register (E8H)	

	4.1.12 P1CON — Port 1 Control Register (E9H)	4-15
	4.1.13 P2CONH — Port 2 Control High Byte Register (EAH)	
	4.1.14 P2CONL — Port 2 Control Low Byte Register (ÈBH)	
	4.1.15 PWMCON — PWM Control Register (F3H)	
	4.1.16 PWMEX — PWM Extension Register (F1H)	
	4.1.17 STOPCON — Stop Mode Control Register (E4H)	4-21
	4.1.18 SYM — System Mode Register (DFH)	4-22
	4.1.19 T0CON — Timer 0 Control Register (D2H)	4-23
5 Inter	rupt Structure	5_1
	•	
	Overview	
5.2	Interrupt Processing Control Points	
5.3	Enable/Disable Interrupt Instructions (EI, DI)	
5.4	Interrupt Pending Function Types	
5.5	Interrupt Priority	
5.6	Interrupt Source Service Sequence	5-3
5.7	Interrupt Service Routines	5-3
5.8	Generating interrupt Vector Addresses	5-3
5.9	S3F94C8/S3F94C4 Interrupt Structure	5-4
5.10	Peripheral Interrupt Control Registers	5-5
6 Instr	uction Set	6-1
	Overview	
	Register Addressing	
	Addressing Modes	
6.4	Flags Register	
6.5	Flag Descriptions	
	6.5.1 Overflow Flag (FLAGS.4, V)	
	6.5.2 Sign Flag (FLAGS.5, S)	
	6.5.3 Zero Flag (FLAGS.6, Z)	
	6.5.4 Carry Flag (FLAGS.7, C)	
6.6	Instruction Set Notation	
6.7	Condition Codes	
6.8	Instruction Descriptions	
0.0	6.8.1 ADC — Add with Carry	
	6.8.2 ADD — Add	
	6.8.3 AND — Logical AND	
	6.8.4 CALL — Call Procedure	
	6.8.5 CCF — Complement Carry Flag	
	6.8.6 CLR — Clear	
	6.8.7 COM — Complement.	
	6.8.8 CP — Compare	
	6.8.9 DEC — Decrement	
	6.8.10 DI — Disable Interrupts	
	6.8.11 El — Enable Interrupts	
	6.8.12 IDLE — Idle Operation	
	6.8.13 INC — Increment	
	6.8.14 IRET — Interrupt Return	
	6.8.15 JP — Jump	
	6.8.16 JR — Jump Relative	
	6.8.17 LD — Load	
	6.8.18 LD — Load	
	6.8.19 LDC/LDE — Load Memory	6-29

	6.8.20 LDC/LDE — Load Memory	
	6.8.21 LDCD/LDED — Load Memory and Decrement	
	6.8.22 LDCI/LDEI — Load Memory and Increment 6.8.23 NOP — No Operation	
	6.8.24 OR — Logical OR	
	6.8.25 POP — Pop From Stack	
	6.8.26 PUSH — Push To Stack	
	6.8.27 RCF — Reset Carry Flag	
	6.8.28 RET — Return	
	6.8.29 RL — Rotate Left	
	6.8.30 RLC — Rotate Left Through Carry 6.8.31 RR — Rotate Right	
	6.8.32 RRC — Rotate Right Through Carry	
	6.8.33 SBC — Subtract With Carry	
	6.8.34 SCF — Set Carry Flag	
	6.8.35 SRA — Shift Right Arithmetic	
	6.8.36 STOP — Stop Operation	
	6.8.37 SUB — Subtract	
	6.8.38 TCM — Test Complement Under Mask	
	6.8.39 TM — Test Under Mask 6.8.40 XOR — Logical Exclusive OR	
	ck Circuit	
7.1	Overview	7-1
7.2	Main Oscillator Logic	7-1
	7.2.1 Clock Status During Power-Down Modes	
	7.2.2 System Clock Control Register	7-2
8 RES	SET and Power-Down	
	System Reset	
	8.1.1 External RESET pin	
	8.1.2 MCU Initialization Sequence	
82	Power-Down Modes	
0.2	8.2.1 Stop Mode	
	8.2.2 Using RESET to Release Stop Mode	
	8.2.3 Using an External Interrupt to Release Stop Mode	
	8.2.4 Idle Mode	
8.3	Hardware Reset Values	
9 I/O	Ports	9-1
	Overview	
	Port Data Registers	
9.2		
	9.2.1 Port 0 9.2.2 Port 2	
	asic Timer and Timer 0	
10.1	1 Module Overview	10-1
	10.1.1 Basic Timer (BT)	
	10.1.2 Timer 0	10-1
10.2	2 Basic Timer	10-2
	10.2.1 Basic Timer Control Register	
10.3	3 Basic Timer Function Description	
	10.3.1 Watchdog Timer Function	
	10.3.2 Oscillation Stabilization Interval Timer Function	

10.4 Timer 0	10-7
10.4.1 Timer 0 Control Registers	10-7
10.5 Timer 0 Function Description	10-8
10.5.1 Interval Timer Mode	10-8
11 Pulse Width Modulation	11-1
11.1 Overview	11-1
11.2 Function Description	
11.2.1 PWM	
11.2.2 PWM Counter 11.2.3 PWM Data and Extension Registers	
Figure 11-1. PWM Data and Extension Registers	
11.2.4 PWM Clock Rate	
11.2.5 PWM Function Description	11-3
11.2.6 PWM Output Waveform	
Table 11-3. PWM output "stretch" Values for Extension Data bits Ext1 (PWMEX.72)	11-6
Table 11-4. PWM output "stretch" Values for Extension Data bits Ext1 (PWMEX.72)	11-8
Figure 11-6. PWM Basic Waveform (8-bit base)	11-8
Figure 11-7. PWM Basic Waveform (8-bit base + 6-bit extension)	11-9
11.2.7 PWM Control Register	11-10
Figure 11-8. PWM Control Register (PWMCON)	
11.2.8 PWM Extension Register (PWMex)	11-10
Figure 11-9. PWM Extension Register (PWMEX)	11-11
Figure 11-10. PWM Data Register (PWMDATA)	11-11
Figure 11-12. PWM Module Functional Block Diagram	11-12
12 A/D Converter	12-1
12.1 Overview	12-1
12.1.1 Using A/D Pins for Standard digital Input	
12.1.2 A/D Converter Control Register (ADCON) 12.1.3 Internal Reference Voltage Levels	
12.1.4 Conversion timing	
12.1.5 Internal A/D Conversion Procedure	12-5
13 Embedded Flash Memory Interface	13-1
13.1 Overview	
13.1.1 Flash ROM Configuration	
13.1.2 Tool Program Mode 13.1.3 User Program Mode	
13.2 Flash Memory Control Registers, User Program Mode	
13.2.1 Flash Memory Control Register	13-2
13.2.2 Flash Memory User Programming Enable Register	
13.2.3 Flash Memory Sector Address Registers 13.3 Sector Erase	
13.3 Sector Erase	
13.4.1 Program Procedure In User Program Mode	
13.5 Reading	
13.5.1 Program Procedure In User Program Mode	

13.6 Hard Lock Protection	13-13
13.6.1 Program Procedure In User Program Mode	13-13
14 Electrical Data	
14.1 Overview	14-1
14.2 Table 14-11. Flash Memory AC Electrical Characteristics	14-11
15 Mechanical Data	15-1
16 S3F94C8/S3F94C4 Flash MCUs	16-1
16.1 Overview	16-1
16.2 On-Board Writing	16-4
16.2.1 Circuit Design Guide	16-4
16.3 Information Block	16-5
17 Development Tools	17-1
17.1 Target Boards	17-1
17.2 Programming Socket Adapter	17-1
17.2.1 Development System Configuration	17-2
17.2.2 TB94C8/94C4 Target Board	
17.2.3 SMDS2+ Selection (SAM8)	
17.2.4 Third Parties for Development Tools	
17.2.5 In-Circuit Emulators	
17.2.6 OTP/MTP Programmers	17-9

List of Figures

Figure Number	Title	Page Number
Figure 1-	. Block Diagram	1-3
Figure 1-2	2. Pin Assignment Diagram, 20-Pin DIP/SOP/SSOP Packages	
Figure 1-3	B. Pin Assignment Diagram, 16-Pin SOP/TSSOP Packages	1-5
	I. Pin Circuit Type A	
	5. Pin Circuit Type B (P1.2)	
	6. Pin Circuit Type C	
	7. Pin Circuit Type D	
	3. Pin Circuit Type E (Port 2)	
Figure 1-9	9. Pin Circuit Type E-1 (Port 0)	
Figure 1-7	10. Pin Circuit Type E-2 (P1.0-P1.1)	1-9
	Program Memory Address Space	
	2. Smart Option	
	3. Internal Register File Organization	
	I. 16-Bit Register Pairs	
Figure 2-8	5. Stack Operations	2-8
	I. Register Addressing	
	2. Working Register Addressing	
	Indirect Register Addressing to Register File	
	I. Indirect Register Addressing to Program Memory	
	5. Indirect Working Register Addressing to Register File	
	6. Indirect Working Register Addressing to Program or Data Memory	
	7. Indexed Addressing to Register File	
	8. Indexed Addressing to Program or Data Memory with Short Offset	
	D. Indexed Addressing to Program or Data Memory with Long Offset	
	0. Direct Addressing for Load Instructions.	
	1. Direct Addressing for Call and Jump Instructions	
	2. Relative Addressing	
Figure 5-	3. Immediate Addressing	
Figure 4-7	I. Register Description Format	4-4
Figure 5-2	. S3F9-Series Interrupt Type	5-1
	2. Interrupt Function Diagram	
Figure 5-3	3. S3F94C8/S3F94C4 Interrupt Structure	5-4
Figure 6-2	I. System Flags Register (FLAGS)	6-4
Figure 7-2	. Main Oscillator Circuit (RC Oscillator with Internal Capacitor)	7-1
	2. Main Oscillator Circuit (Crystal/Ceramic Oscillator)	
	B. System Clock Control Register (CLKCON)	
	I. System Clock Circuit Diagram	
Figure 8-2	2. Recommended External RESET Circuit	
	3. Reset Block Diagram	

Figure 9-1. Port Data Register Format. 9-2 Figure 9-2. Port 0 Control Register (POCONH, High Byte). 9-3 Figure 9-3. Port 0 Control Register (POCONL, Low Byte). 9-5 Figure 9-4. Port 0 Control Register (POCONL, Low Byte). 9-5 Figure 9-5. Port 1 Control Register (POCON). 9-6 Figure 9-6. Port 1 Control Register (POCON). 9-7 Figure 9-1. Port 1 Control Register (POCON). 9-8 Figure 9-1. Port 2 Control Register (PCCON). 9-9 Figure 9-1. Port 2 Control Register (PCCON). 9-10 Figure 9-1. Port 2 Control Register (PCCON). 10-2 Figure 0-2. Socillation Stabilization Time on RESET 10-4 Figure 10-3. Socillation Stabilization Time on RESET 10-4 Figure 10-5. Simplified Timer 0 Function Diagram (Interval Timer Mode) 10-7 Figure 10-7. Basic Timer and Timer 0 Bioke Diagram 10-10 Figure 11-1. PVM Data and Extension Registers 11-2 Figure 11-1. PVM Basic Waveform (6-bit base) 11-4 Figure 11-3. Extended PVMW Waveform (6-bit base + 2-bit extension) 11-7 Figure 11-4. PVM Basic Waveform (6-bit base + 2-bit extension) 11-7 Figure 11-1. PVM Masic Waveform (6-bit base + 2-bit extensio	Figure 8-4. Timing for S3F94C8/S3F94C4 After RESET	
Figure 9-2. Port 0 Circuit Diagram. 9-3 Figure 9-3. Port 0 Control Register (PCCONH, High Byte). 9-4 Figure 9-4. Port 0 Control Register (PCCONH, Low Byte). 9-5 Figure 9-5. Port 1 Circuit Diagram. 9-6 Figure 9-7. Port 1 Circuit Diagram. 9-7 Figure 9-7. Port 1 Circuit Diagram. 9-8 Figure 9-8. Port 2 Circuit Diagram. 9-9 Figure 9-1. Dort 2 Control Register (PCCONL, Low Byte). 9-11 Figure 10-1. Basic Timer Control Register (BTCON). 10-2 Figure 10-2. Oscillation Stabilization Time on Stop Mode Release 10-5 Figure 10-3. Simplified Timer 0 Function Diagram (Interval Timer Mode). 10-7 Figure 10-4. Timer 0 Timing Diagram. 10-10 Figure 11-2. PWM Basic Waveform (6-bit base). 11-4 Figure 11-1. PWM Data and Extension Registers. 11-2 Figure 11-2. PWM Basic Waveform (6-bit base). 11-6 Figure 11-2. PWM Basic Waveform (6-bit base). 11-6 Figure 11-1. PWM Basic Waveform (6-bit base). 11-6 Figure 11-2. PWM Basic Waveform	Figure 9-1. Port Data Register Format	
Figure 9-3. Port 0 Control Register (POCONL, Low Byte) 9-4 Figure 9-4. Port 0 Control Register (POCONL, Low Byte) 9-5 Figure 9-5. Port 0 Interrupt Pending Registers (POPND) 9-6 Figure 9-5. Port 1 Control Register (PICON) 9-8 Figure 9-7. Port 1 Control Register (PICON) 9-8 Figure 9-8. Port 2 Control Register (PICON) 9-8 Figure 9-7. Port 1 Control Register (PICON) 9-10 Figure 9-8. Port 2 Control Register (PICON) 9-10 Figure 9-10. Port 2 Control Register (PICON) 9-10 Figure 10-1. Basic Timer Control Register (BTCON) 10-2 Figure 10-3. Oscillation Stabilization Time on RESET 10-4 Figure 10-4. Simplified Timer 0 Function Diagram (Interval Timer Mode) 10-7 Figure 10-5. Simplified Timer 0 Function Diagram (Interval Timer Mode) 10-9 Figure 11-1. PWM Data and Extension Registers 11-2 Figure 11-3. Extended PWM Waveform (6-bit base + 2-bit extension) 11-1 Figure 11-4. PWM Basic Waveform (6-bit base + 6-bit extension) 11-1 Figure 11-5. Extended PWM Waveform (6-bit base + 6-bit extension) 11-1 Figure 11-1. PWM Data and Extension Register (PWMDAD) 11-11 Figure 11-2. PWM Basic Waveform (6-bit base + 6-bit extension)		
Figure 9-4. Port 0 Control Register (POCONL, Low Byte) 9-5 Figure 9-5. Port 1 Circuit Diagram 9-7 Figure 9-6. Port 1 Circuit Diagram 9-7 Figure 9-8. Port 2 Circuit Diagram 9-8 Figure 9-8. Port 2 Circuit Diagram 9-9 Figure 9-9. Port 2 Control Register (PCONL, Low Byte) 9-10 Figure 9-10. Port 2 Control Register (BTCON) 10-2 Figure 10-1. Basic Timer Control Register (BTCON) 10-2 Figure 10-3. Oscillation Stabilization Time on RESET 10-4 Figure 10-2. Oscillation Stabilization Time on Stop Mode Release 10-5 Figure 10-6. Timer 0 Control Register (TOCON) 10-2 Figure 10-7. Basic Timer and Timer 0 Elock Diagram 10-4 Figure 10-7. Basic Timer and Timer 0 Block Diagram 10-10 Figure 11-1. PVMD Bata and Extension Register (BMCON) 11-2 Figure 11-3. Extended PWM Waveform (6-bit base) 11-4 Figure 11-3. Extended PWM Waveform (6-bit base) 11-6 Figure 11-1. PVM Bata waveform (6-bit base) 11-6 Figure 11-1. PVM Masic Waveform (6-bit base) 11-16 Figure 11-1. PVM Masic Waveform (6-bit base) 11-17 Figure 11-1. PVM Masic W		
Figure 9-5. Port 0 Interrupt Pending Registers (POPND) 9-6 Figure 9-7. Port 1 Control Register (P1CON) 9-7 Figure 9-7. Port 1 Control Register (P1CON) 9-8 Figure 9-8. Port 2 Circuit Diagram 9-9 Figure 9-9. Port 2 Control Register (P2CONL, Low Byte) 9-10 Figure 9-10. Port 2 Control Register (P2CONL, Low Byte) 9-11 Figure 10-1. Basic Timer Control Register (BTCON) 10-2 Figure 10-3. Oscillation Stabilization Time on RSEST 10-4 Figure 10-3. Oscillation Stabilization Time on Stop Mode Release 10-5 Figure 10-4. Simplified Timer 0 Function Diagram (Interval Timer Mode) 10-7 Figure 10-5. Simplified Timer 0 Function Diagram (Interval Timer Mode) 10-8 Figure 11-1. PWM Data and Extension Registers 11-2 Figure 11-1. PWM Data and Extension Registers 11-2 Figure 11-2. PVM Basic Waveform (6-bit base) 11-6 Figure 11-4. PVM Mask Waveform (6-bit base) 11-6 Figure 11-5. PVM Basic Waveform (6-bit base) 11-7 Figure 11-6. PVM Basic Waveform (8-bit base) 11-7 Figure 11-7. PVM Data Register (PWMON) 11-16 Figure 11-1. PVM Mascont Register (PWMON) 11-17		
Figure 9-6. Port 1 Circuit Diagram 9-7 Figure 9-7 Port 1 Control Register (P1CON) 9-8 Figure 9-8. Port 2 Circuit Diagram 9-9 Figure 9-9. Port 2 Control Register (P2CONL, Low Byte) 9-10 Figure 9-10. Port 2 Control Register (P2CONL, Low Byte) 9-11 Figure 9-10. Port 2 Control Register (P2CONL, Low Byte) 9-11 Figure 10-1. Basic Timer Control Register (BTCON) 10-2 Figure 10-2. Oscillation Stabilization Time on RtSET 10-4 Figure 10-3. Simplified Timer 0 Function Diagram (Interval Timer Mode) 10-7 Figure 10-5. Simplified Timer 0 Function Diagram (Interval Timer Mode) 10-8 Figure 10-7. Basic Timer and Timer 0 Block Diagram. 10-9 Figure 11-1. PVM Data and Extension Registers. 11-2 Figure 11-3. Extended PVM Waveform (6-bit base) 11-4 Figure 11-4. PVM Basic Waveform (6-bit base) 11-6 Figure 11-5. Extended PVM Waveform (6-bit base) 11-7 Figure 11-6. PVM Basic Waveform (6-bit base) 11-7 Figure 11-7. PVM Masic Waveform (6-bit base) 11-7 Figure 11-8. PVM Masic Waveform (6-bit base) 11-7 Figure 11-9. PVM Masic Waveform (6-bit base) 11-7	Figure 9-5. Port 0 Interrupt Pending Registers (P0PND)	
Figure 9-7. Port 1 Control Register (P1CON). 9-8 Figure 9-8. Port 2 Circuil Diagram. 9-9 Figure 9-8. Port 2 Control Register (P2CONL, Low Byte). 9-10 Figure 9-10. Port 2 Control Register (P2CONL, Low Byte). 9-11 Figure 10-1. Basic Timer Control Register (BTCON). 10-2 Figure 10-3. Oscillation Stabilization Time on RSEST 10-4 Figure 10-4. Socialition Stabilization Time on Stop Mode Release 10-5 Figure 10-5. Simplified Timer 0 Function Diagram (Interval Timer Mode) 10-7 Figure 10-6. Timer 0 Timing Diagram. 10-9 Figure 10-7. Basic Timer and Timer 0 Block Diagram. 10-10 Figure 11-1. PWM Data and Extension Registers 11-2 Figure 11-2. PVM Basic Waveform (6-bit base) 11-5 Figure 11-3. Extended PWM Waveform (6-bit base) 11-6 Figure 11-4. PVM Data and Extension Register (PWMCON) 11-16 Figure 11-5. Extended PWM Waveform (6-bit base) 11-6 Figure 11-8. PVM Extension Register (PWMCON) 11-17 Figure 11-8. PVM Extension Register (PWMCON) 11-17 Figure 11-1. PVM Data Register (PWMCON) 11-17 Figure 12-1. A/D Converter Control Register (ADCON) 12-2 Figure 12-2. A/D Converter Control Regis		
Figure 9-8. Port 2 Control Register (P2CONH, High Byte). 9-9 Figure 9-9. Port 2 Control Register (P2CONL, Low Byte). 9-10 Figure 10-1. Basic Timer Control Register (BTCON). 10-2 Figure 10-2. Oscillation Stabilization Time on RESET 10-4 Figure 10-3. Oscillation Stabilization Time on Stop Mode Release 10-5 Figure 10-4. Timer 0 Control Registers (TOCON). 10-7 Figure 10-5. Simplified Timer 0 Function Diagram (Interval Timer Mode) 10-8 Figure 10-7. Basic Timer and Timer 0 Block Diagram. 10-9 Figure 11-1. PWM Data and Extension Registers. 11-2 Figure 11-2. PWM Basic Waveform (6-bit base) 11-4 Figure 11-3. Extended PWM Waveform (6-bit base) 11-6 Figure 11-4. PWM Basic Waveform (6-bit base) 11-6 Figure 11-5. Extended PWM Waveform (6-bit base) 11-6 Figure 11-6. PWM Basic Waveform (6-bit base) 11-7 Figure 11-7. PWM Data Register (PWMCX) 11-11 Figure 11-8. DWM Control Register (PWMCX) 11-11 Figure 11-9. PWM Extension Register (PWMCX) 11-11 Figure 12-1. A/D Converter Control Register (ADDCN) 12-2 Figure 12-3. A/D Converter Data Register (PWMCX) 11-11 Figure 13-4. Fissh Memory Sec		
Figure 9-10. Port 2 Control Register (P2CONL, Low Byte) 9-11 Figure 10-1. Basic Timer Control Register (BTCON) 10-2 Figure 10-2. Oscillation Stabilization Time on RESET 10-4 Figure 10-3. Oscillation Stabilization Time on Stop Mode Release 10-5 Figure 10-4. Timer 0 Control Registers (TCCON) 10-7 Figure 10-5. Simplified Timer 0 Function Diagram (Interval Timer Mode) 10-8 Figure 10-6. Timer 0 Timing Diagram 10-9 Figure 11-1. PWM Data and Extension Registers 11-2 Figure 11-2. PWM Basic Waveform (6-bit base) 11-4 Figure 11-3. Extended PWM Waveform (6-bit base) 11-6 Figure 11-4. PWM Basic Waveform (6-bit base) 11-6 Figure 11-5. Extended PWM Waveform (6-bit base) 11-7 Figure 11-6. PWM Basic Waveform (6-bit base) 11-6 Figure 11-7 PWM Control Register (PWMCON) 11-1 Figure 11-8. PWM Control Register (PWMCON) 11-1 Figure 11-10. PWM Data Register (PWMEX) 11-11 Figure 11-2. PWM Module Functional Block Diagram 11-12 Figure 12-1. A/D Converter Control Register (ADCON) 12-2 Figure 12-2. A/D Converter Data Register (ADCON) 12-2 Figure 13-3. Flash Memory Sector Address R		
Figure 10-1. Basic Timer Control Register (BTCON) 10-2 Figure 10-3. Oscillation Stabilization Time on RESET 10-4 Figure 10-3. Oscillation Stabilization Time on Stop Mode Release 10-5 Figure 10-4. Timer 0. Control Registers (TOCON) 10-7 Figure 10-5. Simplified Timer 0 Function Diagram (Interval Timer Mode) 10-8 Figure 10-7. Basic Timer and Timer 0 Block Diagram 10-9 Figure 11-1. PWM Data and Extension Registers 11-2 Figure 11-1. Extended PWM Waveform (6-bit base) 11-4 Figure 11-5. Extended PWM Waveform (6-bit base) 11-6 Figure 11-6. PWM Basic Waveform (6-bit base) 11-6 Figure 11-7. PWM Basic Waveform (6-bit base) 11-8 Figure 11-8. Extended PWM Waveform (6-bit base) 11-6 Figure 11-8. PWM Basic Waveform (6-bit base) 11-7 Figure 11-8. PWM Basic Waveform (6-bit base) 11-7 Figure 11-8. PWM Basic Waveform (6-bit base) 11-1 Figure 11-9. PWM Basic Register (PWMCON) 11-1 Figure 11-15. Extended PWM Waveform (6-bit base) 11-1 Figure 11-2. PWM Data Register (PWMCON) 11-1 Figure 11-1. PWM Data Register (PWMCON) 11-11 Figure 11-2. PWM Module Functional Block Diagram 1		
Figure 10-2 Oscillation Stabilization Time on RESET 10-4 Figure 10-3. Oscillation Stabilization Time on Stop Mode Release 10-5 Figure 10-4. Timer 0 Control Registers (T0CON) 10-7 Figure 10-5. Simplified Timer 0 Function Diagram (Interval Timer Mode) 10-9 Figure 10-6. Timer 0 Timing Diagram 10-9 Figure 11-1. PWM Data and Extension Registers 11-2 Figure 11-2. PWM Basic Waveform (6-bit base) 114 Figure 11-3. Extended PWM Waveform (6-bit base) 11-6 Figure 11-4. PWM Basic Waveform (6-bit base) 11-6 Figure 11-5. Extended PWM Waveform (6-bit base) 11-6 Figure 11-6. PWM Basic Waveform (6-bit base) 11-1 Figure 11-6. PWM Basic Waveform (6-bit base) 11-1 Figure 11-7. PWM Basic Waveform (6-bit base) 11-1 Figure 11-8. PWM Control Register (PWMCN) 11-11 Figure 11-8. PWM Control Register (PWMEX) 11-11 Figure 11-10. PWM Data Register (PWMEX) 11-11 Figure 12-2. A/D Converter Control Register (ADCON) 12-2 Figure 12-3. A/D Converter Control Register (ADCON) 12-2 Figure 13-4. Flash Memory Sector Address Register (FMUSR) 13-2 Figure 13-4. Flash Memory Sector Address Register (FMUSR)	Figure 9-10. Port 2 Control Register (P2CONL, Low Byte)	9-11
Figure 10-2 Oscillation Stabilization Time on RESET 10-4 Figure 10-3. Oscillation Stabilization Time on Stop Mode Release 10-5 Figure 10-4. Timer 0 Control Registers (T0CON) 10-7 Figure 10-5. Simplified Timer 0 Function Diagram (Interval Timer Mode) 10-9 Figure 10-6. Timer 0 Timing Diagram 10-9 Figure 11-1. PWM Data and Extension Registers 11-2 Figure 11-2. PWM Basic Waveform (6-bit base) 114 Figure 11-3. Extended PWM Waveform (6-bit base) 11-6 Figure 11-4. PWM Basic Waveform (6-bit base) 11-6 Figure 11-5. Extended PWM Waveform (6-bit base) 11-6 Figure 11-6. PWM Basic Waveform (6-bit base) 11-1 Figure 11-6. PWM Basic Waveform (6-bit base) 11-1 Figure 11-7. PWM Basic Waveform (6-bit base) 11-1 Figure 11-8. PWM Control Register (PWMCN) 11-11 Figure 11-8. PWM Control Register (PWMEX) 11-11 Figure 11-10. PWM Data Register (PWMEX) 11-11 Figure 12-2. A/D Converter Control Register (ADCON) 12-2 Figure 12-3. A/D Converter Control Register (ADCON) 12-2 Figure 13-4. Flash Memory Sector Address Register (FMUSR) 13-2 Figure 13-4. Flash Memory Sector Address Register (FMUSR)	Figure 10-1. Basic Timer Control Register (BTCON)	
Figure 10-4. Timer 0 Control Registers (TOCON).10-7Figure 10-5. Simplified Timer 0 Function Diagram (Interval Timer Mode).10-8Figure 10-6. Timer 0 Timing Diagram.10-9Figure 10-7. Basic Timer and Timer 0 Block Diagram.10-10Figure 11-1. PWM Data and Extension Registers.11-2Figure 11-2. PWM Basic Waveform (6-bit base).11-4Figure 11-3. Extended PWM Waveform (6-bit base + 2-bit extension).11-5Figure 11-4. PWM Basic Waveform (6-bit base).11-6Figure 11-5. Extended PWM Waveform (6-bit base).11-6Figure 11-6. PWM Basic Waveform (6-bit base).11-7Figure 11-7. PWM Extension Register (PWMCN).11-10Figure 11-8. PWM Control Register (PWMCN).11-11Figure 11-9. PWM Extension Register (PWMEX).11-11Figure 11-10. PWM Data Register (PWMDATA).11-11Figure 11-12. PWM Module Functional Block Diagram.11-2Figure 12-1. A/D Converter Control Register (ADCON).12-2Figure 12-3. A/D Converter Circuit Diagram.12-3Figure 12-4. A/D Converter Data Register (ADCAN+//L).12-3Figure 12-5. Recommended A/D Converter Circuit for Highest Absolute Accuracy.12-2Figure 13-1. Flash Memory Sector Address Register (FMSECL).13-3Figure 13-3. Flash Memory Sector Address Register (FMSECL).13-4Figure 13-4. Sector Erase Flowchart in a User Program Mode.13-6Figure 13-5. Sector Configurations in User Program Mode.13-6Figure 13-6. Sector Erase Flowchart in a User Program Mode.13-6Figure 14-1. Input Timing Measurement Poin	Figure 10-2. Oscillation Stabilization Time on RESET	
Figure 10-4. Timer 0 Control Registers (TOCON).10-7Figure 10-5. Simplified Timer 0 Function Diagram (Interval Timer Mode).10-8Figure 10-6. Timer 0 Timing Diagram.10-9Figure 10-7. Basic Timer and Timer 0 Block Diagram.10-10Figure 11-1. PWM Data and Extension Registers.11-2Figure 11-2. PWM Basic Waveform (6-bit base).11-4Figure 11-3. Extended PWM Waveform (6-bit base + 2-bit extension).11-5Figure 11-4. PWM Basic Waveform (6-bit base).11-6Figure 11-5. Extended PWM Waveform (6-bit base).11-6Figure 11-6. PWM Basic Waveform (6-bit base).11-7Figure 11-7. PWM Extension Register (PWMCN).11-10Figure 11-8. PWM Control Register (PWMCN).11-11Figure 11-9. PWM Extension Register (PWMEX).11-11Figure 11-10. PWM Data Register (PWMDATA).11-11Figure 11-12. PWM Module Functional Block Diagram.11-2Figure 12-1. A/D Converter Control Register (ADCON).12-2Figure 12-3. A/D Converter Circuit Diagram.12-3Figure 12-4. A/D Converter Data Register (ADCAN+//L).12-3Figure 12-5. Recommended A/D Converter Circuit for Highest Absolute Accuracy.12-2Figure 13-1. Flash Memory Sector Address Register (FMSECL).13-3Figure 13-3. Flash Memory Sector Address Register (FMSECL).13-4Figure 13-4. Sector Erase Flowchart in a User Program Mode.13-6Figure 13-5. Sector Configurations in User Program Mode.13-6Figure 13-6. Sector Erase Flowchart in a User Program Mode.13-6Figure 14-1. Input Timing Measurement Poin	Figure 10-3. Oscillation Stabilization Time on Stop Mode Release	
Figure 10-6. Timer 0 Timing Diagram.10-9Figure 10-7. Basic Timer and Timer 0 Block Diagram.10-10Figure 11-1. PWM Data and Extension Registers.11-2Figure 11-2. PWM Basic Waveform (6-bit base).11+4Figure 11-3. Extended PWM Waveform (6-bit base).11-5Figure 11-4. PWM Basic Waveform (6-bit base).11-6Figure 11-5. Extended PWM Waveform (6-bit base).11-7Figure 11-6. Extended PWM Waveform (6-bit base).11-7Figure 11-6. Extended PWM Waveform (6-bit base).11-7Figure 11-6. PWM Basic Waveform (8-bit base).11-16Figure 11-6. PWM Basic Waveform (8-bit base).11-11Figure 11-7. PWM Extension Register (PWMCON).11-11Figure 11-8. PWM Control Register (PWMEX).11-11Figure 11-9. PWM Data Register (PWMEX).11-11Figure 11-10. PWM Data Register (PWMDATA).11-11Figure 11-12. PWM Module Functional Block Diagram.11-22Figure 12-1. A/D Converter Control Register (ADCON).12-23Figure 12-2. A/D Converter Control Register (ADCON).12-23Figure 12-3. A/D Converter Control Register (FMCON).12-25Figure 13-1. Flash Memory Control Register (FMCON).13-26Figure 13-2. Flash Memory Sector Address Register (FMSECH).13-34Figure 13-3. Flash Memory Sector Address Register (FMSECH).13-34Figure 13-4. Flash Memory Sector Address Register (FMSECH).13-44Figure 13-5. Sector Configurations in User Program Mode.13-56Figure 13-6. Sector Erase Flowchart in a User Program Mode.13-56Figure 13-7. Byt		
Figure 10-7. Basic Timer and Timer 0 Block Diagram. 10-10 Figure 11-1. PWM Data and Extension Registers 11-2 Figure 11-2. PWM Basic Waveform (6-bit base) 11-4 Figure 11-3. Extended PWM Waveform (6-bit base) 11-5 Figure 11-4. PWM Basic Waveform (6-bit base) 11-6 Figure 11-5. Extended PWM Waveform (6-bit base) 11-6 Figure 11-6. PWM Basic Waveform (6-bit base) 11-7 Figure 11-6. PWM Basic Waveform (6-bit base) 11-7 Figure 11-8. Extended PWM Waveform (6-bit base) 11-8 Figure 11-8. PWM Control Register (PWMCON) 11-10 Figure 11-9. PWM Extension Register (PWMCAN) 11-11 Figure 11-12. PWM Module Functional Block Diagram 11-12 Figure 12-1. A/D Converter Control Register (ADCON) 12-2 Figure 12-3. A/D Converter Control Register (ADDATAH/L) 12-3 Figure 12-4. A/D Converter Timing Diagram 12-4 Figure 13-2. Flash Memory User Programming Enable Register (FMUSR) 13-2 Figure 13-3. Flash Memory User Programming Enable Register (FMUSR) 13-3 Figure 13-4. Flash Memory Sector Address Register (FMSECL) 13-4 Figure 13-5. Sector Configurations in User Program Mode 13-6 Figure 13-6. Sector Erase	Figure 10-5. Simplified Timer 0 Function Diagram (Interval Timer Mode)	
Figure 11-1. PWM Data and Extension Registers 11-2 Figure 11-2. PWM Basic Waveform (6-bit base) 11-4 Figure 11-3. Extended PWM Waveform (6-bit base + 2-bit extension) 11-5 Figure 11-5. Extended PWM Waveform (6-bit base + 6-bit extension) 11-7 Figure 11-6. PWM Basic Waveform (8-bit base) 11-8 Figure 11-6. PWM Basic Waveform (8-bit base) 11-7 Figure 11-8. PWM Control Register (PWMCON) 11-10 Figure 11-9. PWM Extension Register (PWMDATA) 11-11 Figure 11-10. PWM Data Register (PWMDATA) 11-11 Figure 12-1. A/D Converter Control Register (ADCON) 12-2 Figure 12-2. A/D Converter Control Register (ADDATAH/L) 12-3 Figure 12-3. A/D Converter Data Register (ADDATAH/L) 12-3 Figure 12-4. A/D Converter Diagram 12-3 Figure 12-5. Recommended A/D Converter Circuit for Highest Absolute Accuracy 12-5 Figure 13-1. Flash Memory Sector Address Register (FMSECH) 13-4 Figure 13-3. Flash Memory Sector Address Register (FMSECH) 13-4 Figure 13-4. Flash Memory Sector Address Register (FMSECH) 13-4 Figure 13-5. Sector Configurations in User Program Mode 13-5 Figure 13-6. Sector Configurations in User Program Mode 13-9	Figure 10-6. Timer 0 Timing Diagram	
F\u00ed_url11-2PWM Basic Waveform (6-bit Dase)11-4Figure 11-3. Extended PWM Waveform (6-bit base)11-5Figure 11-4. PWM Basic Waveform (6-bit base)11-6Figure 11-5. Extended PWM Waveform (6-bit base)11-7Figure 11-6. PWM Basic Waveform (8-bit base)11-7Figure 11-7. PWM Basic Waveform (8-bit base)11-7Figure 11-8. PWM Control Register (PWMCON)11-10Figure 11-9. PWM Extension Register (PWMEX)11-11Figure 11-10. PWM Data Register (PWMDATA)11-11Figure 11-12. PWM Module Functional Block Diagram11-22Figure 12-1. A/D Converter Control Register (ADCON)12-2Figure 12-2. A/D Converter Control Register (ADCAN)12-3Figure 12-3. A/D Converter Data Register (ADDATAH/L)12-3Figure 12-4. A/D Converter Timing Diagram12-4Figure 12-5. Recommended A/D Converter Circuit for Highest Absolute Accuracy12-5Figure 13-1. Flash Memory Control Register (FMCON)13-2Figure 13-2. Flash Memory Sector Address Register (FMSECL)13-3Figure 13-3. Flash Memory Sector Address Register (FMSECL)13-4Figure 13-6. Sector Configurations in User Program Mode13-5Figure 13-7. Byte Program Flowchart in a User Program Mode13-9Figure 13-8. Program Flowchart in a User Program Mode13-9Figure 13-8. Program Flowchart in a User Program Mode13-9Figure 14-1. Input Timing Measurement Points.14-5Figure 14-3. Schmitt Trigger Input Characteristics Diagram14-8Figure 14-4. Stop Mode Release Timing When Initiated by a	Figure 10-7. Basic Timer and Timer 0 Block Diagram	10-10
Figure 11-3. Extended PWM Waveform (6-bit base + 2-bit extension)11-5Figure 11-4. PWM Basic Waveform (6-bit base)11-6Figure 11-5. Extended PWM Waveform (8-bit base + 6-bit extension)11-7Figure 11-6. PWM Basic Waveform (8-bit base)11-8Figure 11-8. PWM Control Register (PWMCON)11-10Figure 11-9. PWM Extension Register (PWMCAN)11-11Figure 11-10. PWM Data Register (PWMDATA)11-11Figure 11-12. PWM Module Functional Block Diagram11-22Figure 12-1. A/D Converter Control Register (ADCON)12-2Figure 12-2. A/D Converter Control Register (ADDATAH/L)12-3Figure 12-3. A/D Converter Data Register (ADDATAH/L)12-3Figure 12-4. A/D Converter Tata Register (ADDATAH/L)12-3Figure 12-5. Recommended A/D Converter Circuit for Highest Absolute Accuracy12-5Figure 13-1. Flash Memory Control Register (FMCON)13-2Figure 13-2. Flash Memory Sector Address Register (FMSECH)13-4Figure 13-5. Sector Configurations in User Program Mode13-4Figure 13-6. Sector Configurations in User Program Mode13-6Figure 13-7. Byte Program Flowchart in a User Program Mode13-10Figure 14-8. Program Flowchart in a User Program Mode13-10Figure 14-9. Contract in Suster Program Mode13-10Figure 14-9. Schmitt Trigger Input Characteristics Diagram14-8Figure 14-1. Input Timing Measurement Points14-48Figure 14-3. Schmitt Trigger Input Characteristics Diagram14-8Figure 14-4. Stop Mode Release Timing When Initiated by a RESET14-9Fi	Figure 11-1. PWM Data and Extension Registers	
Figure 11-4. PWM Basic Waveform (6-bit base)11-6Figure 11-5. Extended PVM Waveform (6-bit base + 6-bit extension)11-7Figure 11-6. PWM Basic Waveform (8-bit base)11-8Figure 11-6. PWM Easic Waveform (8-bit base)11-8Figure 11-8. PWM Control Register (PWMCON)11-10Figure 11-9. PWM Extension Register (PWMEX)11-11Figure 11-10. PWM Data Register (PWMEX)11-11Figure 11-10. PWM Data Register (PWMDATA)11-11Figure 11-12. PWM Module Functional Block Diagram11-22Figure 12-2. A/D Converter Control Register (ADCON)12-23Figure 12-3. A/D Converter Data Register (ADDATAH/L)12-3Figure 12-4. A/D Converter Data Register (ADDATAH/L)12-3Figure 12-5. Recommended A/D Converter Circuit for Highest Absolute Accuracy12-5Figure 13-2. Flash Memory Control Register (FMCON)13-2Figure 13-3. Flash Memory Sector Address Register (FMSECH)13-3Figure 13-4. Flash Memory Sector Address Register (FMSECL)13-4Figure 13-5. Sector Configurations in User Program Mode13-5Figure 13-6. Sector Erase Flowchart in User Program Mode13-5Figure 13-7. Byte Program Flowchart in a User Program Mode13-9Figure 14-2. Operating Voltage Range14-8Figure 14-3. Schmitt Trigger Input Characteristics Diagram14-8Figure 14-4. Stop Mode Release Timing When Initiated by a RESET14-9Figure 14-5. LVR Reset Timing14-11Figure 14-5. LVR Reset Timing14-11Figure 14-5. LVR Reset Timing14-11Figure 14-5. LVR Reset Ti	Figure 11-2. PWM Basic Waveform (6-bit base)	11-4
Figure 11-5. Extended PWM Waveform (6-bit base + 6-bit extension)11-7Figure 11-6. PWM Basic Waveform (8-bit base)11-8Figure 11-8. PWM Control Register (PWMCON)11-10Figure 11-9. PWM Extension Register (PWMEX)11-11Figure 11-10. PWM Data Register (PWMDATA)11-11Figure 11-12. PWM Module Functional Block Diagram11-12Figure 12-1. A/D Converter Control Register (ADCON)12-2Figure 12-2. A/D Converter Circuit Diagram12-3Figure 12-3. A/D Converter Circuit Diagram12-3Figure 12-4. A/D Converter Timing Diagram12-3Figure 12-5. Recommended A/D Converter Circuit for Highest Absolute Accuracy12-5Figure 13-7. Flash Memory Control Register (FMCON)13-2Figure 13-8. Flash Memory Sector Address Register (FMSECH)13-4Figure 13-7. Flash Memory Sector Address Register (FMSECL)13-4Figure 13-7. Byte Program Flowchart in a User Program Mode13-6Figure 13-7. Byte Program Flowchart in a User Program Mode13-10Figure 14-1. Input Timing Measurement Points14-5Figure 14-2. Operating Voltage Range14-8Figure 14-3. Schwitt Trigger Input Characteristics Diagram14-14Figure 14-4. Stop Mode Release Timing When Initiated by a RESET14-12Figure 14-5. LVR Reset Timing14-14Figure 14-4. Stop Mode Release Timing When Initiated by a RESET14-12Figure 14-5. LVR Reset Timing14-11Figure 14-5. LVR Reset Timing14-12Figure 15-1. 20-DIP-300A Package Dimensions15-1Figure 15-2. USOP-375 Package Di	Figure 11-3. Extended PWM Waveform (6-bit base + 2-bit extension)	11-5
Figure 11-6. PWM Basic Waveform (8-bit base)11-8Figure 11-8. PWM Control Register (PWMCON)11-10Figure 11-8. PWM Extension Register (PWMEX)11-11Figure 11-10. PWM Data Register (PWMDATA)11-11Figure 11-12. PWM Module Functional Block Diagram11-12Figure 12-1. A/D Converter Control Register (ADCON)12-2Figure 12-2. A/D Converter Circuit Diagram12-3Figure 12-3. A/D Converter Circuit Diagram12-3Figure 12-4. A/D Converter Timing Diagram12-3Figure 12-5. Recommended A/D Converter Circuit for Highest Absolute Accuracy12-5Figure 13-1. Flash Memory Control Register (FMCON)13-2Figure 13-2. Flash Memory Sector Address Register (FMUSR)13-3Figure 13-3. Flash Memory Sector Address Register (FMSECL)13-4Figure 13-4. Flash Memory Sector Address Register (FMSECL)13-4Figure 13-5. Sector Configurations in User Program Mode13-6Figure 13-7. Byte Program Flowchart in a User Program Mode13-6Figure 13-8. Program Flowchart in a User Program Mode13-10Figure 14-1. Input Timing Measurement Points14-5Figure 14-3. Schmitt Trigger Input Characteristics Diagram14-8Figure 14-4. Stop Mode Release Timing14-11Figure 14-5. LVR Reset Timing14-11Figure 14-6. The Circuit Diagram to Improve EFT Characteristics14-11Figure 15-1. 20-DIP-300A Package Dimensions15-1Figure 15-2. OSCP-375 Package Dimensions15-1	Figure 11-4. PWM Basic Waveform (6-bit base)	
Figure 11-8. PWM Control Register (PWMCON)11-10Figure 11-9. PWM Extension Register (PWMEX)11-11Figure 11-9. PWM Data Register (PWMDATA)11-11Figure 11-10. PWM Module Functional Block Diagram11-11Figure 12-1. A/D Converter Control Register (ADCON)12-2Figure 12-2. A/D Converter Circuit Diagram12-3Figure 12-3. A/D Converter Timing Diagram12-3Figure 12-4. A/D Converter Timing Diagram12-4Figure 12-5. Recommended A/D Converter Circuit for Highest Absolute Accuracy12-5Figure 13-6. Flash Memory Control Register (FMCON)13-2Figure 13-7. Flash Memory Sector Address Register (FMSECH)13-4Figure 13-8. Flash Memory Sector Address Register (FMSECL)13-4Figure 13-7. Sector Configurations in User Program Mode13-5Figure 13-7. Byte Program Flowchart in User Program Mode13-9Figure 13-8. Program Flowchart in a User Program Mode13-9Figure 13-8. Program Flowchart in a User Program Mode13-10Figure 14-1. Input Timing Measurement Points14-5Figure 14-3. Schmitt Trigger Input Characteristics Diagram14-8Figure 14-4. Stop Mode Release Timing Wen Initiated by a RESET14-9Figure 14-5. LVR Reset Timing14-11Figure 14-6. The Circuit Diagram to Improve EFT Characteristics14-11Figure 15-1. 20-DIP-300A Package Dimensions15-1Figure 15-2. OSOP-375 Package Dimensions15-1		
Figure 11-9. PWM Extension Register (PWMEX)11-11Figure 11-10. PWM Data Register (PWMDATA)11-11Figure 11-12. PWM Module Functional Block Diagram11-12Figure 12-1. A/D Converter Control Register (ADCON)12-2Figure 12-2. A/D Converter Circuit Diagram12-3Figure 12-3. A/D Converter Circuit Diagram12-3Figure 12-4. A/D Converter Timing Diagram12-3Figure 12-5. Recommended A/D Converter Circuit for Highest Absolute Accuracy12-5Figure 13-1. Flash Memory Control Register (FMCON)13-2Figure 13-2. Flash Memory User Programming Enable Register (FMUSR)13-3Figure 13-3. Flash Memory Sector Address Register (FMSECL)13-4Figure 13-6. Sector Configurations in User Program Mode13-5Figure 13-7. Byte Program Flowchart in a User Program Mode13-9Figure 13-8. Program Flowchart in a User Program Mode13-10Figure 14-1. Input Timing Measurement Points14-5Figure 14-3. Schmitt Trigger Input Characteristics Diagram14-8Figure 14-4. Stop Mode Release Timing When Initiated by a RESET14-9Figure 14-5. LVR Reset Timing14-11Figure 14-6. The Circuit Diagram to Improve EFT Characteristics14-11Figure 15-1. 20-DIP-300A Package Dimensions15-2	Figure 11-6. PWM Basic Waveform (8-bit base)	11-8
Figure 11-10. PWM Data Register (PWMDATA)		
Figure 11-12.PWM Module Functional Block Diagram11-12Figure 12-1. A/D Converter Control Register (ADCON)12-2Figure 12-2. A/D Converter Data Register (ADDATAH/L)12-3Figure 12-3. A/D Converter Data Register (ADDATAH/L)12-3Figure 12-4. A/D Converter Timing Diagram12-4Figure 12-5. Recommended A/D Converter Circuit for Highest Absolute Accuracy12-5Figure 13-1. Flash Memory Control Register (FMCON)13-2Figure 13-2. Flash Memory User Programming Enable Register (FMUSR)13-3Figure 13-3. Flash Memory Sector Address Register (FMSECH)13-4Figure 13-4. Flash Memory Sector Address Register (FMSECL)13-4Figure 13-5. Sector Configurations in User Program Mode13-5Figure 13-7. Byte Program Flowchart in a User Program Mode13-6Figure 13-8. Program Flowchart in a User Program Mode13-9Figure 14-1. Input Timing Measurement Points14-5Figure 14-2. Operating Voltage Range14-8Figure 14-3. Schmitt Trigger Input Characteristics Diagram14-8Figure 14-4. Stop Mode Release Timing When Initiated by a RESET14-9Figure 14-5. LVR Reset Timing14-11Figure 15-1. 20-DIP-300A Package Dimensions15-1Figure 15-2. 20-SOP-375 Package Dimensions15-2		
Figure 12-1. A/D Converter Control Register (ADCON) 12-2 Figure 12-2. A/D Converter Circuit Diagram 12-3 Figure 12-3. A/D Converter Data Register (ADDATAH/L) 12-3 Figure 12-4. A/D Converter Timing Diagram 12-4 Figure 12-5. Recommended A/D Converter Circuit for Highest Absolute Accuracy 12-5 Figure 13-1. Flash Memory Control Register (FMCON) 13-2 Figure 13-2. Flash Memory User Programming Enable Register (FMUSR) 13-3 Figure 13-3. Flash Memory Sector Address Register (FMSECH) 13-4 Figure 13-4. Flash Memory Sector Address Register (FMSECL) 13-4 Figure 13-5. Sector Configurations in User Program Mode 13-5 Figure 13-6. Sector Erase Flowchart in User Program Mode 13-9 Figure 13-7. Byte Program Flowchart in a User Program Mode 13-9 Figure 13-8. Program Flowchart in a User Program Mode 13-10 Figure 14-1. Input Timing Measurement Points 14-5 Figure 14-2. Operating Voltage Range 14-8 Figure 14-3. Schmitt Trigger Input Characteristics Diagram 14-8 Figure 14-4. Stop Mode Release Timing When Initiated by a RESET 14-9 Figure 14-4. Stop Mode Release Timing When Initiated by a RESET 14-11 Figure 15-1. 20-DIP-300A Package Dimensions		
Figure 12-2. A/D Converter Circuit Diagram12-3Figure 12-3. A/D Converter Data Register (ADDATAH/L)12-3Figure 12-4. A/D Converter Timing Diagram12-4Figure 12-5. Recommended A/D Converter Circuit for Highest Absolute Accuracy12-5Figure 13-1. Flash Memory Control Register (FMCON)13-2Figure 13-2. Flash Memory User Programming Enable Register (FMUSR)13-3Figure 13-3. Flash Memory Sector Address Register (FMSECH)13-4Figure 13-4. Flash Memory Sector Address Register (FMSECL)13-4Figure 13-5. Sector Configurations in User Program Mode13-5Figure 13-6. Sector Erase Flowchart in User Program Mode13-6Figure 13-7. Byte Program Flowchart in a User Program Mode13-9Figure 14-1. Input Timing Measurement Points14-5Figure 14-2. Operating Voltage Range14-8Figure 14-3. Schmitt Trigger Input Characteristics Diagram14-8Figure 14-4. Stop Mode Release Timing When Initiated by a RESET14-9Figure 15-1. 20-DIP-300A Package Dimensions15-1Figure 15-2. 20-SOP-375 Package Dimensions15-2	Figure 11-12. PWM Module Functional Block Diagram	11-12
Figure 12-3. A/D Converter Data Register (ADDATAH/L)12-3Figure 12-4. A/D Converter Timing Diagram12-4Figure 12-5. Recommended A/D Converter Circuit for Highest Absolute Accuracy12-5Figure 13-1. Flash Memory Control Register (FMCON)13-2Figure 13-2. Flash Memory User Programming Enable Register (FMUSR)13-3Figure 13-3. Flash Memory Sector Address Register (FMSECH)13-4Figure 13-4. Flash Memory Sector Address Register (FMSECL)13-4Figure 13-5. Sector Configurations in User Program Mode13-5Figure 13-6. Sector Erase Flowchart in User Program Mode13-6Figure 13-7. Byte Program Flowchart in a User Program Mode13-9Figure 14-1. Input Timing Measurement Points.14-5Figure 14-2. Operating Voltage Range14-8Figure 14-3. Schmitt Trigger Input Characteristics Diagram14-8Figure 14-4. Stop Mode Release Timing When Initiated by a RESET14-9Figure 15-1. 20-DIP-300A Package Dimensions15-1Figure 15-2. 20-SOP-375 Package Dimensions15-2		
Figure 12-4. A/D Converter Timing Diagram12-4Figure 12-5. Recommended A/D Converter Circuit for Highest Absolute Accuracy12-5Figure 13-1. Flash Memory Control Register (FMCON)13-2Figure 13-2. Flash Memory User Programming Enable Register (FMUSR)13-3Figure 13-3. Flash Memory Sector Address Register (FMSECH)13-4Figure 13-4. Flash Memory Sector Address Register (FMSECL)13-4Figure 13-5. Sector Configurations in User Program Mode13-5Figure 13-6. Sector Erase Flowchart in User Program Mode13-6Figure 13-7. Byte Program Flowchart in a User Program Mode13-9Figure 14-8. Program Flowchart in a User Program Mode13-10Figure 14-1. Input Timing Measurement Points14-5Figure 14-2. Operating Voltage Range14-8Figure 14-3. Schmitt Trigger Input Characteristics Diagram14-8Figure 14-4. Stop Mode Release Timing When Initiated by a RESET14-9Figure 14-5. LVR Reset Timing14-11Figure 15-1. 20-DIP-300A Package Dimensions15-1Figure 15-2. 20-SOP-375 Package Dimensions15-2		
Figure 12-5. Recommended A/D Converter Circuit for Highest Absolute Accuracy12-5Figure 13-1. Flash Memory Control Register (FMCON)13-2Figure 13-2. Flash Memory User Programming Enable Register (FMUSR)13-3Figure 13-3. Flash Memory Sector Address Register (FMSECH)13-4Figure 13-4. Flash Memory Sector Address Register (FMSECL)13-4Figure 13-5. Sector Configurations in User Program Mode13-5Figure 13-6. Sector Erase Flowchart in User Program Mode13-9Figure 13-7. Byte Program Flowchart in a User Program Mode13-9Figure 13-8. Program Flowchart in a User Program Mode13-10Figure 14-1. Input Timing Measurement Points14-5Figure 14-3. Schmitt Trigger Input Characteristics Diagram14-8Figure 14-4. Stop Mode Release Timing When Initiated by a RESET14-9Figure 14-5. LVR Reset Timing14-11Figure 15-1. 20-DIP-300A Package Dimensions15-1Figure 15-2. 20-SOP-375 Package Dimensions15-2	Figure 12-3. A/D Converter Data Register (ADDATAH/L)	12-3
Figure 13-1. Flash Memory Control Register (FMCON)13-2Figure 13-2. Flash Memory User Programming Enable Register (FMUSR)13-3Figure 13-3. Flash Memory Sector Address Register (FMSECH)13-4Figure 13-4. Flash Memory Sector Address Register (FMSECL)13-4Figure 13-5. Sector Configurations in User Program Mode13-5Figure 13-6. Sector Erase Flowchart in User Program Mode13-6Figure 13-7. Byte Program Flowchart in a User Program Mode13-9Figure 13-8. Program Flowchart in a User Program Mode13-10Figure 14-1. Input Timing Measurement Points14-5Figure 14-2. Operating Voltage Range14-8Figure 14-3. Schmitt Trigger Input Characteristics Diagram14-8Figure 14-4. Stop Mode Release Timing When Initiated by a RESET14-9Figure 14-5. LVR Reset Timing14-11Figure 15-1. 20-DIP-300A Package Dimensions15-1Figure 15-2. 20-SOP-375 Package Dimensions15-2		
Figure 13-2. Flash Memory User Programming Enable Register (FMUSR)13-3Figure 13-3. Flash Memory Sector Address Register (FMSECH)13-4Figure 13-4. Flash Memory Sector Address Register (FMSECL)13-4Figure 13-5. Sector Configurations in User Program Mode13-5Figure 13-6. Sector Erase Flowchart in User Program Mode13-6Figure 13-7. Byte Program Flowchart in a User Program Mode13-9Figure 13-8. Program Flowchart in a User Program Mode13-10Figure 14-1. Input Timing Measurement Points14-5Figure 14-2. Operating Voltage Range14-8Figure 14-3. Schmitt Trigger Input Characteristics Diagram14-8Figure 14-4. Stop Mode Release Timing When Initiated by a RESET14-9Figure 14-5. LVR Reset Timing14-11Figure 14-6. The Circuit Diagram to Improve EFT Characteristics14-12Figure 15-1. 20-DIP-300A Package Dimensions15-1Figure 15-2. 20-SOP-375 Package Dimensions15-2	Figure 12-5. Recommended A/D Converter Circuit for Highest Absolute Accuracy	
Figure 13-3. Flash Memory Sector Address Register (FMSECH)13-4Figure 13-4. Flash Memory Sector Address Register (FMSECL)13-4Figure 13-5. Sector Configurations in User Program Mode13-5Figure 13-6. Sector Erase Flowchart in User Program Mode13-6Figure 13-7. Byte Program Flowchart in a User Program Mode13-9Figure 13-8. Program Flowchart in a User Program Mode13-10Figure 14-1. Input Timing Measurement Points14-5Figure 14-2. Operating Voltage Range14-8Figure 14-3. Schmitt Trigger Input Characteristics Diagram14-8Figure 14-4. Stop Mode Release Timing When Initiated by a RESET14-9Figure 14-5. LVR Reset Timing14-11Figure 15-1. 20-DIP-300A Package Dimensions15-1Figure 15-2. 20-SOP-375 Package Dimensions15-2		
Figure 13-4. Flash Memory Sector Address Register (FMSECL)13-4Figure 13-5. Sector Configurations in User Program Mode13-5Figure 13-6. Sector Erase Flowchart in User Program Mode13-6Figure 13-7. Byte Program Flowchart in a User Program Mode13-9Figure 13-8. Program Flowchart in a User Program Mode13-10Figure 14-1. Input Timing Measurement Points14-5Figure 14-2. Operating Voltage Range14-8Figure 14-3. Schmitt Trigger Input Characteristics Diagram14-8Figure 14-4. Stop Mode Release Timing When Initiated by a RESET14-9Figure 14-5. LVR Reset Timing14-11Figure 14-6. The Circuit Diagram to Improve EFT Characteristics14-12Figure 15-1. 20-DIP-300A Package Dimensions15-1Figure 15-2. 20-SOP-375 Package Dimensions15-2		
Figure 13-5. Sector Configurations in User Program Mode13-5Figure 13-6. Sector Erase Flowchart in User Program Mode13-6Figure 13-7. Byte Program Flowchart in a User Program Mode13-9Figure 13-8. Program Flowchart in a User Program Mode13-10Figure 14-1. Input Timing Measurement Points14-5Figure 14-2. Operating Voltage Range14-8Figure 14-3. Schmitt Trigger Input Characteristics Diagram14-8Figure 14-4. Stop Mode Release Timing When Initiated by a RESET14-9Figure 14-5. LVR Reset Timing14-11Figure 14-6. The Circuit Diagram to Improve EFT Characteristics14-12Figure 15-1. 20-DIP-300A Package Dimensions15-1Figure 15-2. 20-SOP-375 Package Dimensions15-2	Figure 13-3. Flash Memory Sector Address Register (FMSECH)	
Figure 13-6. Sector Erase Flowchart in User Program Mode13-6Figure 13-7. Byte Program Flowchart in a User Program Mode13-9Figure 13-8. Program Flowchart in a User Program Mode13-10Figure 14-1. Input Timing Measurement Points14-5Figure 14-2. Operating Voltage Range14-8Figure 14-3. Schmitt Trigger Input Characteristics Diagram14-8Figure 14-4. Stop Mode Release Timing When Initiated by a RESET14-9Figure 14-5. LVR Reset Timing14-11Figure 14-6. The Circuit Diagram to Improve EFT Characteristics14-12Figure 15-1. 20-DIP-300A Package Dimensions15-1Figure 15-2. 20-SOP-375 Package Dimensions15-2		
Figure 13-7. Byte Program Flowchart in a User Program Mode13-9Figure 13-8. Program Flowchart in a User Program Mode13-10Figure 14-1. Input Timing Measurement Points14-5Figure 14-2. Operating Voltage Range14-8Figure 14-3. Schmitt Trigger Input Characteristics Diagram14-8Figure 14-4. Stop Mode Release Timing When Initiated by a RESET14-9Figure 14-5. LVR Reset Timing14-11Figure 14-6. The Circuit Diagram to Improve EFT Characteristics14-12Figure 15-1. 20-DIP-300A Package Dimensions15-1Figure 15-2. 20-SOP-375 Package Dimensions15-2		
Figure 13-8. Program Flowchart in a User Program Mode.13-10Figure 14-1. Input Timing Measurement Points.14-5Figure 14-2. Operating Voltage Range.14-8Figure 14-3. Schmitt Trigger Input Characteristics Diagram14-8Figure 14-4. Stop Mode Release Timing When Initiated by a RESET14-9Figure 14-5. LVR Reset Timing14-11Figure 14-6. The Circuit Diagram to Improve EFT Characteristics14-12Figure 15-1. 20-DIP-300A Package Dimensions15-1Figure 15-2. 20-SOP-375 Package Dimensions15-2		
Figure 14-1. Input Timing Measurement Points.14-5Figure 14-2. Operating Voltage Range14-8Figure 14-3. Schmitt Trigger Input Characteristics Diagram14-8Figure 14-4. Stop Mode Release Timing When Initiated by a RESET14-9Figure 14-5. LVR Reset Timing14-11Figure 14-6. The Circuit Diagram to Improve EFT Characteristics14-12Figure 15-1. 20-DIP-300A Package Dimensions15-1Figure 15-2. 20-SOP-375 Package Dimensions15-2		
Figure 14-2. Operating Voltage Range14-8Figure 14-3. Schmitt Trigger Input Characteristics Diagram14-8Figure 14-4. Stop Mode Release Timing When Initiated by a RESET14-9Figure 14-5. LVR Reset Timing14-11Figure 14-6. The Circuit Diagram to Improve EFT Characteristics14-12Figure 15-1. 20-DIP-300A Package Dimensions15-1Figure 15-2. 20-SOP-375 Package Dimensions15-2	Figure 13-8. Program Flowchart in a User Program Mode	
Figure 14-3. Schmitt Trigger Input Characteristics Diagram 14-8 Figure 14-4. Stop Mode Release Timing When Initiated by a RESET 14-9 Figure 14-5. LVR Reset Timing 14-11 Figure 14-6. The Circuit Diagram to Improve EFT Characteristics 14-12 Figure 15-1. 20-DIP-300A Package Dimensions 15-1 Figure 15-2. 20-SOP-375 Package Dimensions 15-2		
Figure 14-4. Stop Mode Release Timing When Initiated by a RESET 14-9 Figure 14-5. LVR Reset Timing 14-11 Figure 14-6. The Circuit Diagram to Improve EFT Characteristics 14-12 Figure 15-1. 20-DIP-300A Package Dimensions 15-1 Figure 15-2. 20-SOP-375 Package Dimensions 15-2		
Figure 14-5. LVR Reset Timing 14-11 Figure 14-6. The Circuit Diagram to Improve EFT Characteristics 14-12 Figure 15-1. 20-DIP-300A Package Dimensions 15-1 Figure 15-2. 20-SOP-375 Package Dimensions 15-2		
Figure 14-6. The Circuit Diagram to Improve EFT Characteristics. 14-12 Figure 15-1. 20-DIP-300A Package Dimensions. 15-1 Figure 15-2. 20-SOP-375 Package Dimensions. 15-2		
Figure 15-1. 20-DIP-300A Package Dimensions	Figure 14-5. LVR Reset Timing	
Figure 15-2. 20-SOP-375 Package Dimensions	Figure 14-6. The Circuit Diagram to Improve EFT Characteristics	
Figure 15-2. 20-SOP-375 Package Dimensions	Figure 15-1. 20-DIP-300A Package Dimensions	
	Figure 15-3. 20-SSOP-225 Package Dimensions	

Figure 15-4. 16-SOP-225 Package Dimensions Figure 15-5. 16-TSSOP-0044 Package Dimensions	
Figure 16-1. S3F94C8/S3F94C4 Pin Assignments (20-DIP/20SOP)	
Figure 16-2. S3F94C8/S3F94C4 Pin Assignments (16SOP) Figure 16-3. PCB Design Guide for Onboard Programming	.16-4
Figure 16-4. S3F94C8/S3F94C4 Flash Architecture.	16-5
Figure 17-1. Development System Configuration	17-2
Figure 17-2. TB94C8/94C4 Target Board Configuration	17-3
Figure 17-3. DIP Switch for Smart Option	.17-7
Figure 17-4. 20-Pin Connector for TB94C8/94C4	17-8
Figure 17-5. S3F94C8/S3F94C4 Probe Adapter for 20-DIP Package	.17-8

List of Tables

Table	Title	Page
Number		Number
Table 1-1. S3F94C8/S3F94C4 Pi	n Descriptions	
Table 1-2. S3F94C8/S3F94C4 Pi	n Descriptions	
Table 1-3. Descriptions of Pins U	sed to Read/Write the Flash ROM	1-6
Table 2-1. Register Type Summa	ry	
	I Control Registers	
Table 4-1. System and Periphera	I Control Registers (Continued)	
Table 5-1. Interrupt Source Contr	ol and Data Registers	
Table 6-1. Instruction Group Sum	mary	
	ions	
	S	
	onventions	
	nce (Continued)	
Table 8-1. Register Values After a	a Reset	
Table 9-1. S3F94C8/S3F94C4 Po	ort Configuration Overview	
	nmary	
Table 11-1. PWM Control and Da	ta Registers	
	on Time	
	teristics (S3F94C8EZZ/S3F94C4EZZ)	
Table 14-7 RC Oscillator Charact	eristics (S3F94C8XZZ/S3F94C4XZZ)	
	4C8/S3F94C4 Features	
Table 16-4. Operation Results Co	omparison of Main ROM and Information Block	
Table 17-3. The SMDS2+ Tool Section 2015	election Setting	17-5

Product Overview

1.1 SAM88RCRI Microcontrollers

Zilog's SAM88RCRI series of 8-bit single-chip CMOS microcontrollers offers a fast and efficient CPU, a wide range of integrated peripherals, and various programmable ROM sizes. Important CPU features include:

- Efficient register-oriented architecture
- Selectable CPU clock sources
- Idle and Stop power-down mode released by interrupt
- Built-in basic timer with watchdog function

A address/data bus architecture and a large number of bit-configurable I/O ports provide a flexible programming environment for applications with varied memory and I/O requirements. Timer/counters with selectable operating modes are included to support real-time operations.

1.2 S3F94C8/S3F94C4 Microcontroller

The S3F94C8/S3F94C4 single-chip 8-bit microcontroller is designed for useful A/D converter application field. The S3F94C8/S3F94C4 single-chip CMOS microcontroller is fabricated using a highly advanced CMOS process and is based on Zilog's powerful SAM88RCRI CPU architecture. Stop and idle (power-down) modes were implemented to reduce power consumption.

- The S3F94C8 is a microcontroller with a 8KB multi-time-programmable Full Flash ROM embedded.
- The S3F94C4 is a microcontroller with a 4KB multi-time-programmable Full Flash ROM embedded.

The S3C94C8/S3F94C4 is a versatile general-purpose microcontrollers that is ideal for use in a wide range of electronics applications requiring simple timer/counter, PWM. In addition, the S3F94C8/S3F94C4 advanced CMOS technology provides for low power consumption and wide operating voltage range.

Using the SAM88RCRI design approach, the following peripherals were integrated with the powerful core:

- Three configurable I/O ports (18 pins)
- Four interrupt sources with One vectors and one interrupt level
- One 8-bit timer/counter with time interval modes.
- Analog to digital converter with nine input channels (MAX) and 10-bit resolution
- One PWM output with three optional mode: 8-bit (6+2); 12-bit (6+6); 14-bit (8+6);

The S3F94C8/S3F94C4 microcontroller is ideal for use in a wide range of electronic applications requiring simple timer/counter, PWM, ADC. They are currently available in 20 DIP Package, 20/16-pin SOP Package, 20 SSOP Package and 16 TSSOP Package.

1.3 Features

1.3.1 CPU

SAM88RCRI CPU core

1.3.2 Memory

Internal multi-time program Full-Flash memory:

- 8K×8 bits program memory(S3F94C8)
 - 4K×8 bits program memory(S3F94C4)
 - √ Sector size: 128 Bytes
 - $\checkmark~$ User programmable by 'LDC' instruction
 - √ Sector erase available
 - √ Fast programming time
 - ✓ External serial programming support
 - $\checkmark~$ Endurance: 10,000 erase/program
 - cycles
 - \checkmark 10 Years data retention
- 208-byte general-purpose register area

1.3.3 Instruction Set

- 41 instructions
- Idle and Stop instructions added for power-down modes

1.3.4 Instruction Execution Time

400 ns at 10 MHz f_{OSC} (minimum)

1.3.5 Interrupts

1 interrupt levels and 4 interrupt sources (2 *external interrupts* and 2 *internal interrupts*)

1.3.6 General I/O

- Three I/O ports (Max 18 pins)
- Bit-programmable ports

1.3.7 1-Channel High-Speed PWM with Three Selectable Resolutions

- 8-bit PWM: 6-bit base + 2-bit extension
- 12-bit PWM: 6-bit base + 6-bit extension
- 14-bit PWM: 8-bit base + 6-bit extension

1.3.8 Timer/Counters

• One 8-bit basic timer for watchdog function

• One 8-bit timer/counter with time interval modes

1.3.9 A/D Converter

Nine analog input pins (MAX)

• 10-bit conversion resolution

1.3.10 Oscillation Frequency

- 0.4 MHz to 10 MHz external crystal oscillator
- Typical 4MHz external RC oscillator
- Internal RC: 3.2MHz typ., 0.5MHz typ., VDD = 5V

1.3.11 Built-in RESET Circuit (LVR)

Low-Voltage check to make system reset

• V_{LVR} = 1.9/2.3/3.0/3.6/3.9 V (by Smart Option)

1.3.12 Smart Option

- LVR enable/disable
- Oscillator selection

1.3.13 Operating Temperature Range

• -40°C to +85°C

1.3.14 Operating Voltage Range

- 1.8 V to 5.5 V @ 0.4 4M Hz(LVR disable)
- LVR to 5.5V @ 0.4 4M Hz(LVR enable)
- 2.7 V to 5.5V @ 0.4 -10M Hz

1.3.15 Package Types

- 20-DIP-300A
- 20-SOP-375
- 20-SSOP-225
- 16-SOP-225
- 16-TSSOP-0044

Table 1-1.	S3F94C8/S3F94C4 Pin	Descriptions
------------	---------------------	--------------

Device	Operating Temperature Range	Internal RC Temperature Range	Internal RC Tolerance
S3F94C8XZZ/S3F94C4XZZ	–40°C to + 85°C	–40°C to + 85°C	1% @ 5V, 25°C

1.4 Block Diagram

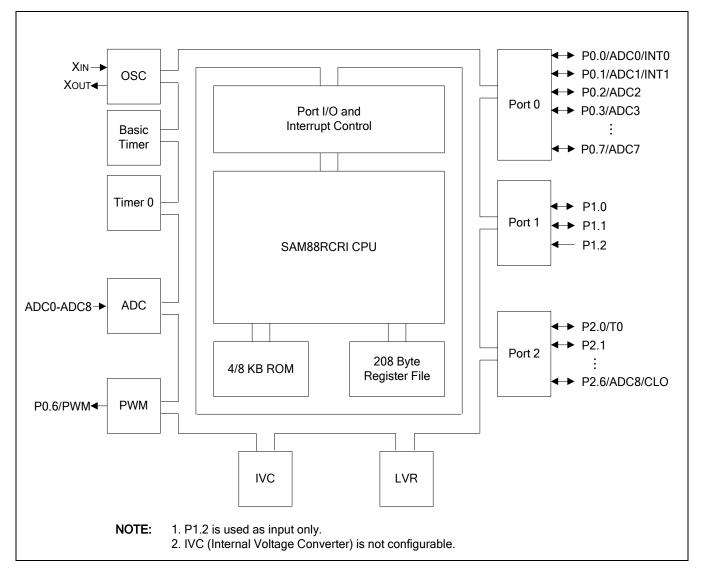
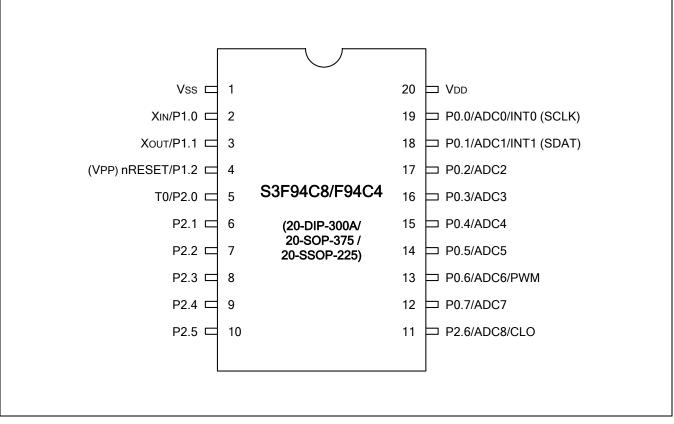



Figure 1-1. Block Diagram

1.5 Pin Assignments

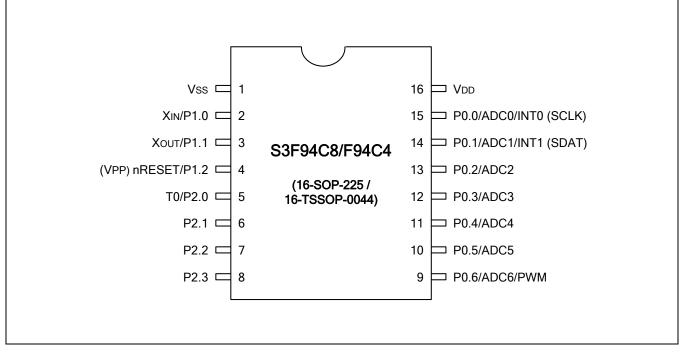


Figure 1-3. Pin Assignment Diagram, 16-Pin SOP/TSSOP Packages

1.6 Pin Descriptions

Pin Name	Input/ Output	Pin Description		Share Pins	
P0.0–P0.7	I/O	Bit-programmable I/O port for Schmitt trigger input or push-pull output. Pull-up resistors are assignable by software. Port 0 pins can also be used as A/D converter input, PWM output or external interrupt input.		ADC0-ADC7 INT0/INT1/ PWM	
P1.0–P1.1	I/O	Bit-programmable I/O port for Schmitt trigger input or push-pull, open-drain output. Pull-up resistors or pull-down resistors are assignable by software.		X _{IN,} X _{OUT}	
P1.2	I	Schmitt trigger input port	B ¹	RESET	
P2.0-P2.6	I/O	Bit-programmable I/O port for Schmitt trigger input or push-pull, open-drain output. Pull-up resistors are assignable by software.	E	ADC8/CLO T0	
X _{IN,} X _{OUT}	-	Crystal/Ceramic, or RC oscillator signal for system clock.		P1.0–P1.1	
nRESET	I	Internal LVR or external RESET	В	P1.2	
$V_{DD,} V_{SS}$	-	Voltage input pin and ground		-	
CLO	0	System clock output port	Е	P2.6	
INT0–INT1	I	External interrupt input port	E-1	P0.0, P0.1	
PWM	0	14-Bit high speed PWM output	E-1	P0.6	
ТО	0	Timer 0 match output	E-1	P2.0	
ADC0-ADC8	Ι	A/D converter input	E-1 E	P0.0–P0.7 P2.6	

Table 1-2. S3F94C8/S3F94C4 Pin Descriptions

Table 1-3. Descriptions of Pins Used to Read/Write the Flash ROM

Main Chip	During Programming			
Pin Name	Pin Name	Pin No.	I/O	Function
P0.1	SDAT	18 (20-pin) 14 (16-pin)	I/O	Serial data pin (output when reading, Input when writing) Input and push-pull output port can be assigned.
P0.0	SCLK	19 (20-pin) 15 (16-pin)	I	Serial clock pin (input only pin).
RESET/P1.2	V _{PP}	4	I	Power supply pin for Tool mode entering (indicates that MTP enters into the Tool mode). When 11 V is applied, MTP is in Tool mode.
V _{DD} /V _{SS}	V_{DD}/V_{SS}	20 (20-pin), 16 (16-pin) 1 (20-pin), 1 (16-pin)	I	Logic power supply pin.

1.7 Pin Circuits

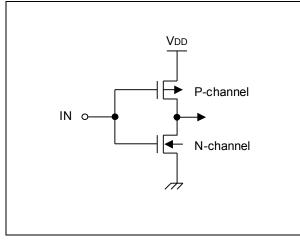


Figure 1-4. Pin Circuit Type A

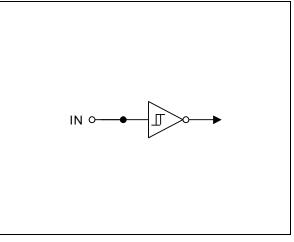


Figure 1-5. Pin Circuit Type B (P1.2)

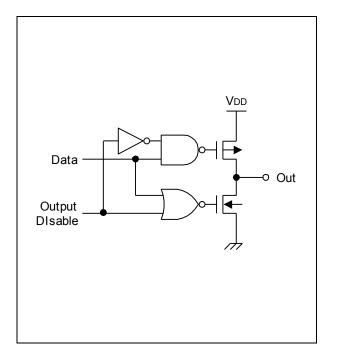


Figure 1-6. Pin Circuit Type C

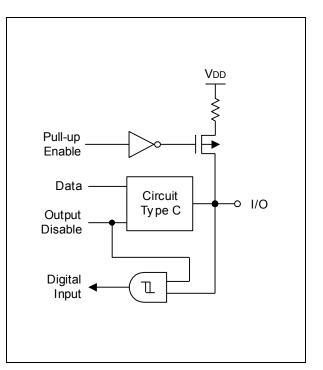


Figure 1-7. Pin Circuit Type D

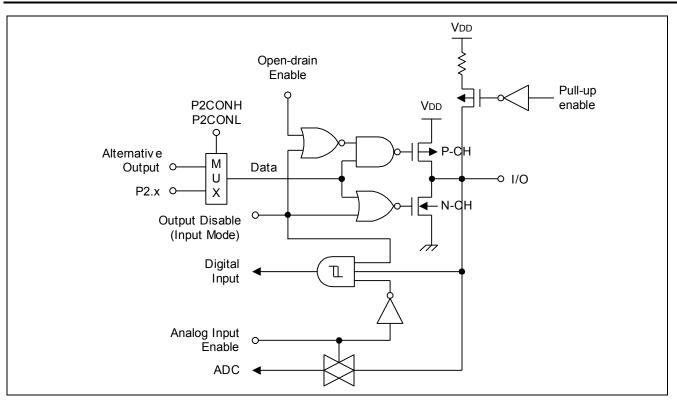


Figure 1-8. Pin Circuit Type E (Port 2)

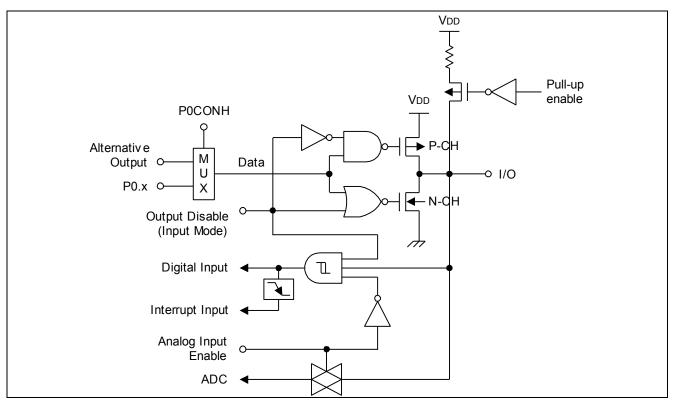


Figure 1-9. Pin Circuit Type E-1 (Port 0)

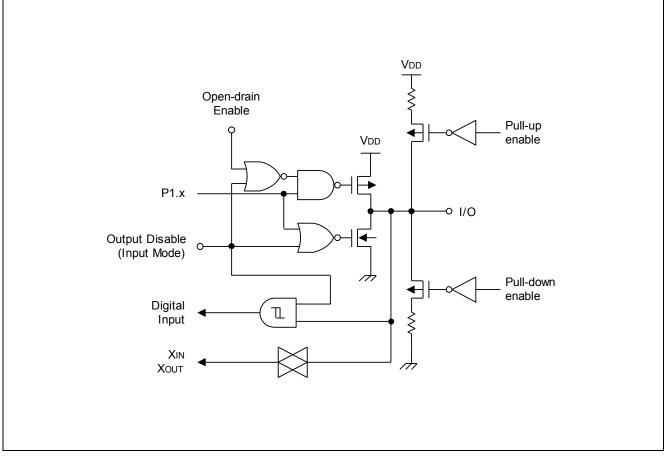
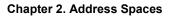



Figure 1-10. Pin Circuit Type E-2 (P1.0-P1.1)

2 Address Spaces

2.1 Overview

The S3F94C8/S3F94C4 microcontroller has two kinds of address space: Internal full Flash program memory (ROM) Internal register file

A 16-bit address bus supports program memory operations. A separate 8-bit register bus carries addresses and data between the CPU and the internal register file.

The S3F94C8/S3F94C4 have 8KB and 4KB of multi-time-programmable full Flash program memory: which is configured as the Internal ROM mode, all of the 4K/8K internal program memory is used.

The S3F94C8/S3F94C4 microcontroller features 208 general-purpose registers in its internal register file. 32 bytes in the register file are mapped for system and peripheral control functions.

2.2 Program Memory (ROM)

2.2.1 Normal Operating Mode

The S3F94C8/S3F94C4 has 8KB and 4KB of internal multi-time-programmable full Flash program memory. The program memory address range is therefore 0H–1FFFH and 0H–0FFFH.

The first 2 bytes of the ROM (0000H–0001H) are interrupt vector address.

Unused locations (0002H–00FFH except 3CH, 3DH, 3EH, and 3FH) can be used as normal program memory. 3CH, 3DH, 3EH, 3FH is used as Smart Option ROM cell.

The program Reset address in the ROM is 0100H.

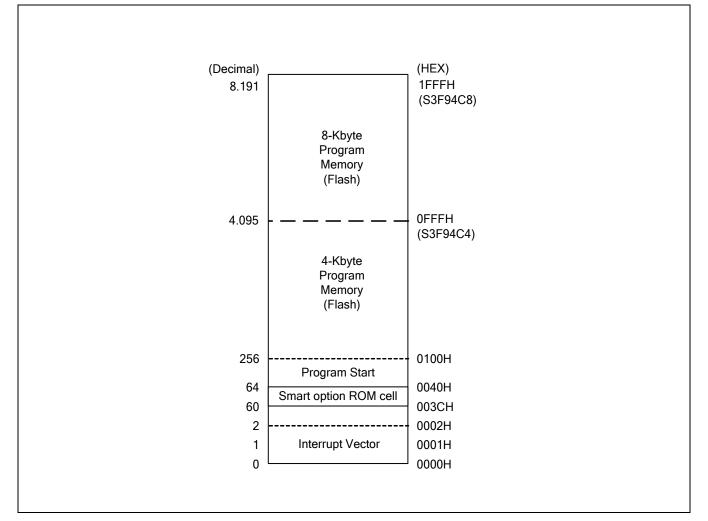


Figure 2-1. Program Memory Address Space

2.3 Smart Option

Smart Option is the ROM option for starting condition of the chip. The ROM addresses used by Smart Option are from 003CH to 003FH. The S3F94C8/S3F94C4 only use 003EH, 003FH. Not used ROM address 003CH, 003DH should be initialized to be initialized to 00H. The default values of ROM 003EH, 003FH are FFH (LVR enable, internal RC oscillator).

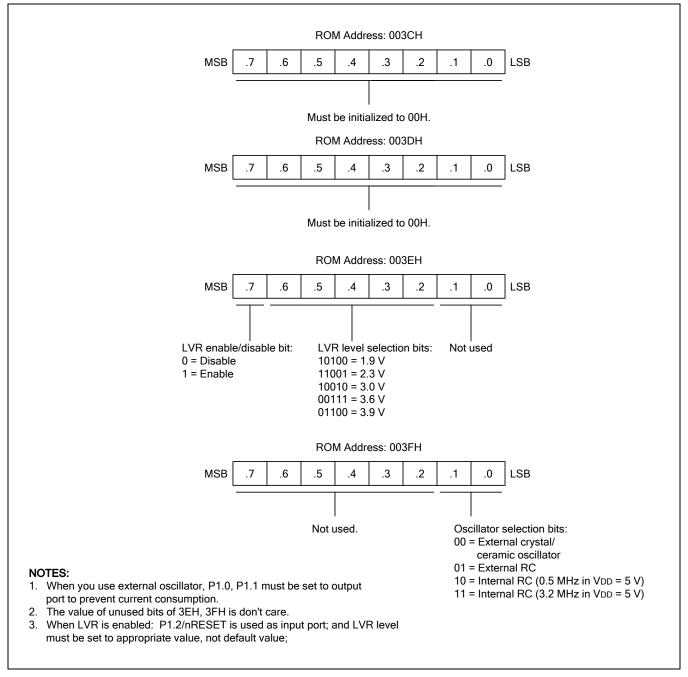


Figure 2-2. Smart Option

Ŧ PROGRAMMING TIP — Smart Option Setting << Interrupt Vector Address >> ; ORG 0000H Vector 00H, INT 94C8 ; S3F94C8/S3F94C4 has only one interrupt vector << Smart Option Setting >> ; ORG 003CH ; 003CH, must be initialized to 0. DB 00H 00H ; 003DH, must be initialized to 0. DB DB 0E4H ; 003EH, enable LVR (2.3 V) ; 003FH, Internal RC (3.2 MHz in $V_{DD} = 5 V$) 03H DB << Reset >> ; ORG 0100н RESET: DI • • •

2.4 Register Architecture

The upper 64 bytes of the S3F94C8/S3F94C4's internal register file are addressed as working registers, system control registers and peripheral control registers. The lower 192 bytes of internal register file (00H–BFH) is called the *general purpose register space*.

240 registers in this space can be accessed; 208 are available for general-purpose use.

In case of S3F94C8/S3F94C4 the total number of addressable 8-bit registers is 240. Of these 240 registers, 32 bytes are for CPU and system control registers and peripheral control and data registers, **16** bytes are used as shared working registers, and 192 registers are for general-purpose use.

For many SAM88RCRI microcontrollers, the addressable area of the internal register file is further expanded by additional register pages at the general purpose register space (00H–BFH: page0). This register file expansion is not implemented in the S3F94C8/S3F94C4, however.

The specific register types and the area (in bytes) that they occupy in the internal register file are summarized in Table 2-1.

Register Type	Number of Bytes
CPU and system control registers	11
Peripheral, I/O, and clock control and data registers	21
General-purpose registers (including the 16-bit common working register area)	208
Total Addressable Bytes	240

Table 2-1. Register Type Summary

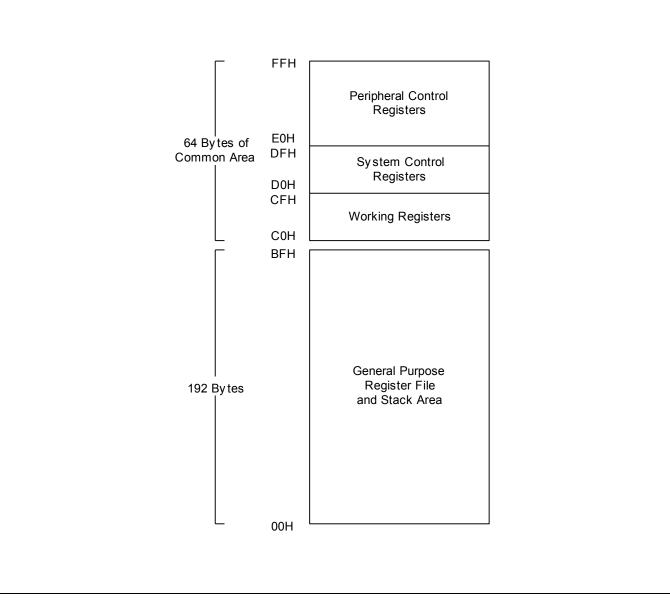


Figure 2-3. Internal Register File Organization

2.5 Common Working Register Area (C0H–CFH)

The SAM88RCRI register architecture provides an efficient method of working register addressing that takes full advantage of shorter instruction formats to reduce execution time.

This16-byte address range is called common area. That is, locations in this area can be used as working registers by operations that address any location on any page in the register file. Typically, these working registers serve as temporary buffers for data operations between different pages. However, because the S3F94C8/S3F94C4 uses only page 0, you can use the common area for any internal data operation.

The working register addressing mode and indirect register addressing mode can be used to access this area.

Registers are addressed either as a single 8-bit register or as a paired 16-bit register. In 16-bit register pairs, the address of the first 8-bit register is always an even number and the address of the next register is an odd number. The most significant byte of the 16-bit data is always stored in the even-numbered register; the least significant byte is always stored in the next (+ 1) odd-numbered register.

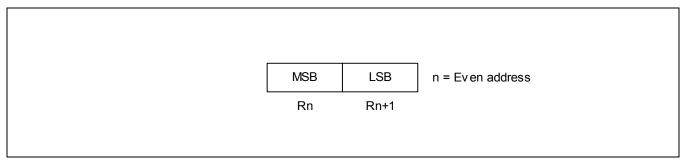


Figure 2-4. 16-Bit Register Pairs

PROGRAMMING TIP — Addressing the Common Working Register Area

As the following examples show, you should access working registers in the common area, locations C0H–CFH, using working register addressing mode and indirect register addressing.

Examples:	1. LD	0С2Н, 40Н	; Invalid addressing mode!
	Use wo	orking register a	addressing instead:
	LD	R2, 40H	; R2 (C2H) \square the value in location 40H
	2. ADD	0C3H, #45H	; Invalid addressing mode!
	Use wo	orking register a	addressing instead:
	ADD	R3, #45H	; R3 (C3H) 🗆 R3 + 45H

2.6 System Stack

S3F9-series microcontrollers use the system stack for subroutine calls and returns and to store data. The PUSH and POP instructions are used to control system stack operations. The S3F94C8/S3F94C4 architecture supports stack operations in the internal register file.

2.6.1 Stack Operations

Return addresses for procedure calls and interrupts and data are stored on the stack. The contents of the PC are saved to stack by a CALL instruction and restored by the RET instruction. When an interrupt occurs, the contents of the PC and the FLAGS register are pushed to the stack. The IRET instruction then pops these values back to their original locations. The stack address is always decremented *before* a push operation and incremented *after* a pop operation. The stack pointer (SP) always points to the stack frame stored on the top of the stack, as shown in Figure 2-5.

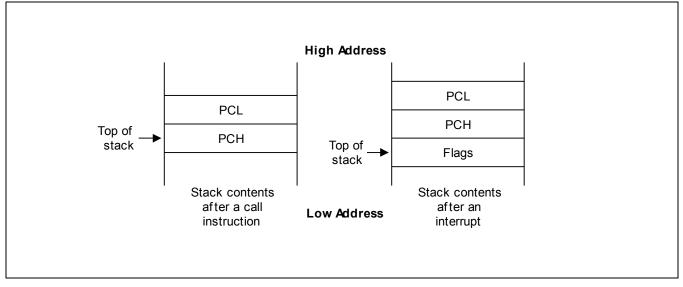


Figure 2-5. Stack Operations

2.6.2 Stack Pointer (SP)

Register location D9H contains the 8-bit stack pointer (SP) that is used for system stack operations. After a reset, the SP value is undetermined.

Because only internal memory 192 bytes space is implemented in the S3F94C8/S3F94C4, the SP must be initialized to an 8-bit value in the range 00H–0C0H.

NOTE

In case a Stack Pointer is initialized to 00H, it is decreased to FFH when stack operation starts. This means that a Stack Pointer access invalid stack area. We recommend that a stack pointer is initialized to C0H to set upper address of stack to BFH.

PROGRAMMING TIP — Standard Stack Operations Using PUSH and POP

The following example shows you how to perform stack operations in the internal register file using PUSH and POP instructions:

LD •	SP,#0C0H	; ;	SP \leftarrow COH (Normally, the SP is set to COH by the initialization routine)
•			
•			
PUSH	SYM	;	Stack address OBFH 🔶 SYM
PUSH	R15	;	Stack address OBEH \leftarrow R15
PUSH	20H	;	Stack address OBDH \leftarrow 20H
PUSH	R3	;	Stack address OBCH \leftarrow R3
•			
•			
•			
POP	R3	;	R3 \leftarrow Stack address OBCH
POP	20H	;	20H \leftarrow Stack address OBDH
POP	R15	;	R15 🔶 Stack address OBEH
POP	SYM	;	SYM \leftarrow Stack address OBFH

3.1 Overview

Instructions that are stored in program memory are fetched for execution using the program counter. Instructions indicate the operation to be performed and the data to be operated on. *Addressing mode* is the method used to determine the location of the data operand. The operands specified in SAM88RCRI instructions may be condition codes, immediate data, or a location in the register file, program memory, or data memory.

The SAM88RCRI instruction set supports six explicit addressing modes. Not all of these addressing modes are available for each instruction. The addressing modes and their symbols are as follows:

Register (R) Indirect Register (IR) Indexed (X) Direct Address (DA) Relative Address (RA) Immediate (IM)

3.2 Register Addressing Mode (R)

In Register addressing mode, the operand is the content of a specified register (see Figure 3-1). Working register addressing differs from Register addressing because it uses an 16-byte working register space in the register file and an 4-bit register within that space (see Figure 3-2).

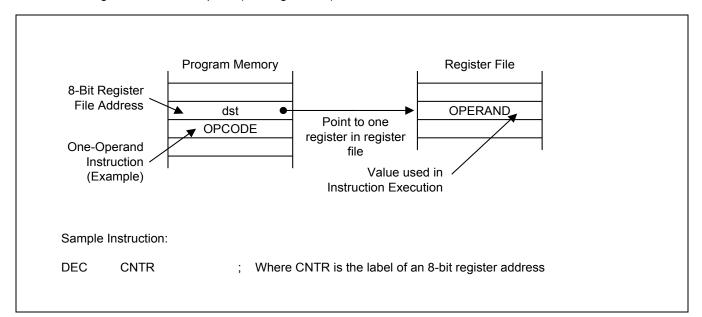
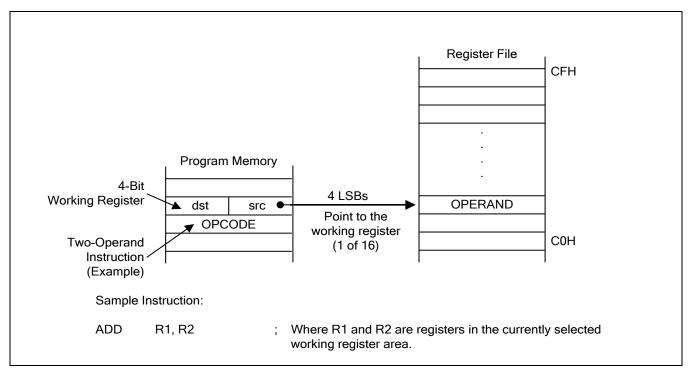



Figure 3-1. Register Addressing

3.3 Indirect Register Addressing Mode (IR)

In Indirect Register (IR) addressing mode, the content of the specified register or register pair is the address of the operand. Depending on the instruction used, the actual address may point to a register in the register file, to program memory (ROM), or to an external memory space (see Figures 3-3 through 3-6).

You can use any 8-bit register to indirectly address another register. Any 16-bit register pair can be used to indirectly address another memory location.

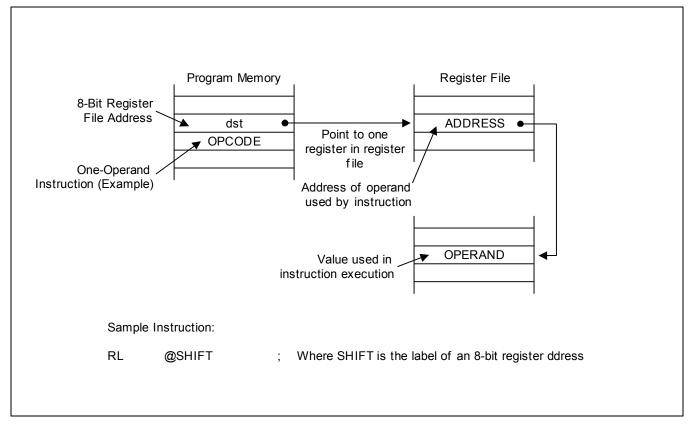


Figure 3-3. Indirect Register Addressing to Register File

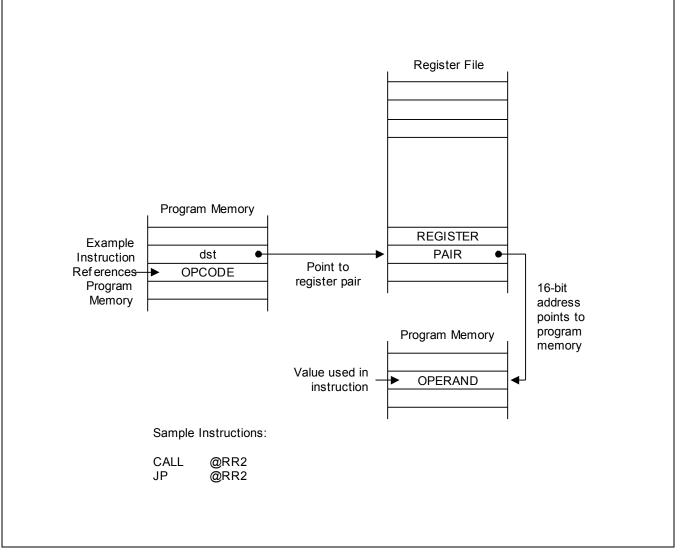


Figure 3-4. Indirect Register Addressing to Program Memory

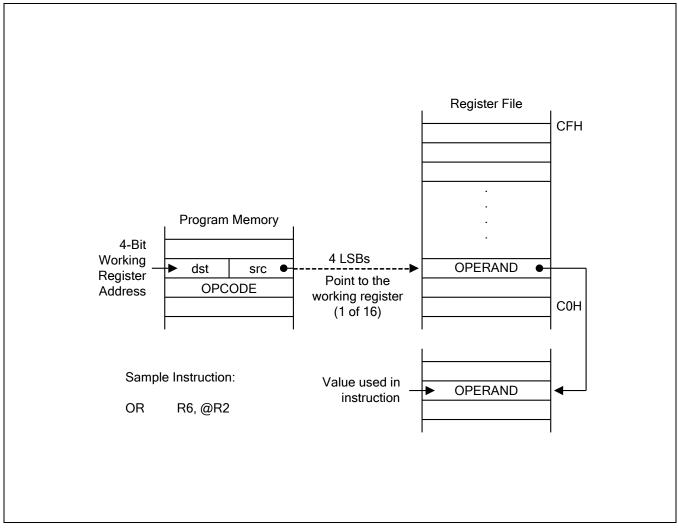


Figure 3-5. Indirect Working Register Addressing to Register File

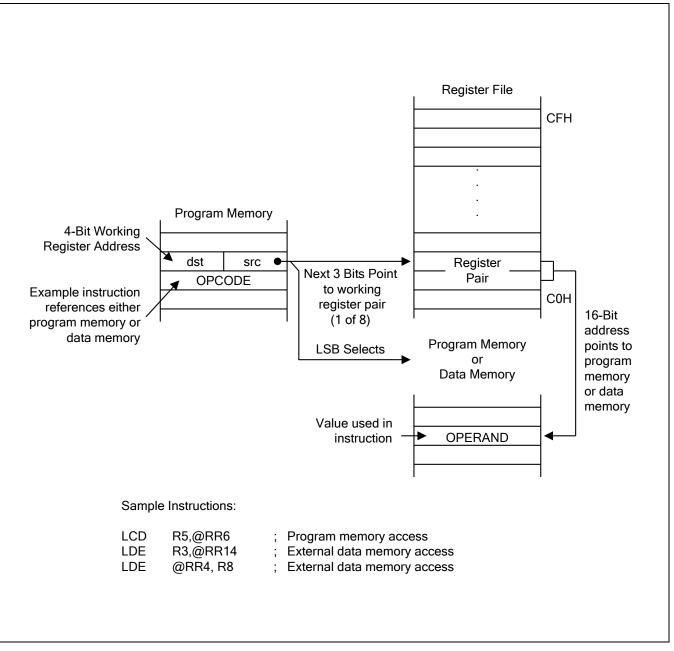


Figure 3-6. Indirect Working Register Addressing to Program or Data Memory

3.4 Indexed Addressing Mode (X)

Indexed (X) addressing mode adds an offset value to a base address during instruction execution in order to calculate the effective operand address (see Figure 3-7). You can use Indexed addressing mode to access locations in the internal register file or in external memory.

In short offset Indexed addressing mode, the 8-bit displacement is treated as a signed integer in the range –128 to +127. This applies to external memory accesses only (see Figure 3-8).

For register file addressing, an 8-bit base address provided by the instruction is added to an 8-bit offset contained in a working register. For external memory accesses, the base address is stored in the working register pair designated in the instruction. The 8-bit or 16-bit offset given in the instruction is then added to the base address (see Figure 3-9).

The only instruction that supports Indexed addressing mode for the internal register file is the Load instruction (LD). The LDC and LDE instructions support Indexed addressing mode for internal program memory, external program memory, and for external data memory, when implemented.

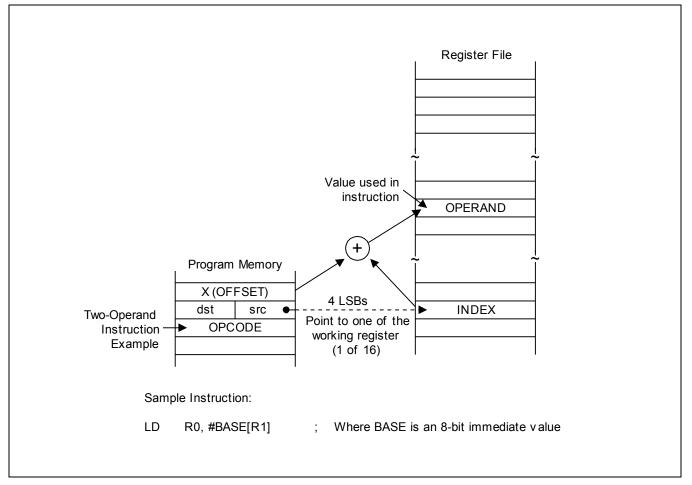


Figure 3-7. Indexed Addressing to Register File

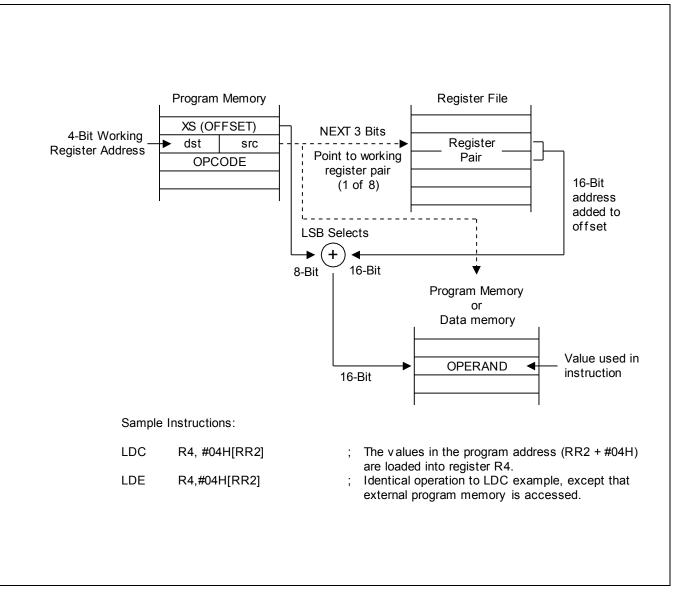


Figure 3-8. Indexed Addressing to Program or Data Memory with Short Offset

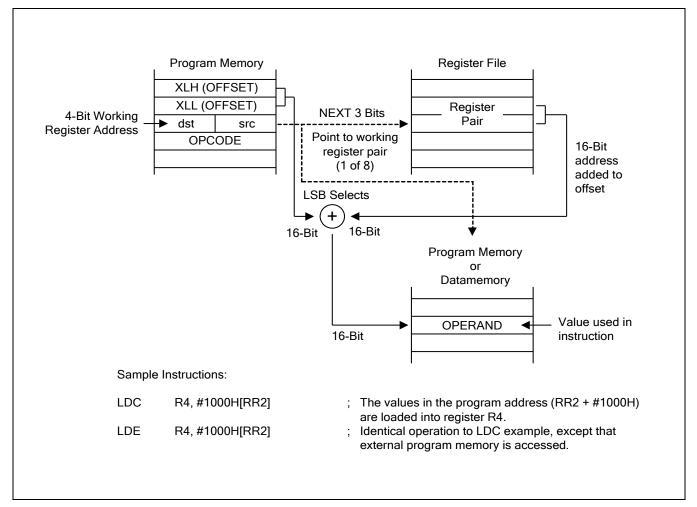


Figure 3-9. Indexed Addressing to Program or Data Memory with Long Offset

3.5 Direct Address Mode (DA)

In Direct Address (DA) mode, the instruction provides the operand's 16-bit memory address. Jump (JP) and Call (CALL) instructions use this addressing mode to specify the 16-bit destination address that is loaded into the PC whenever a JP or CALL instruction is executed.

The LDC and LDE instructions can use Direct Address mode to specify the source or destination address for Load operations to program memory (LDC) or to external data memory (LDE), if implemented.

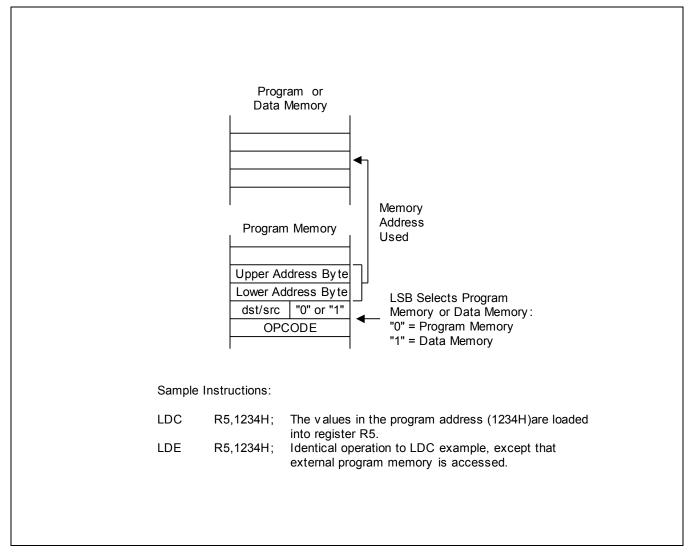


Figure 3-10. Direct Addressing for Load Instructions

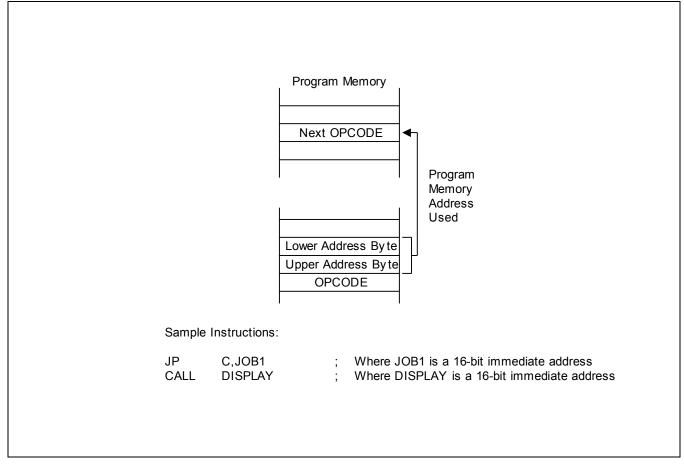


Figure 3-11. Direct Addressing for Call and Jump Instructions

3.6 Relative Address Mode (RA)

In Relative Address (RA) mode, a two's-complement signed displacement between –128 and +127 is specified in the instruction. The displacement value is then added to the current PC value. The result is the address of the next instruction to be executed. Before this addition occurs, the PC contains the address of the instruction immediately following the current instruction.

The instruction that support RA addressing is JR.

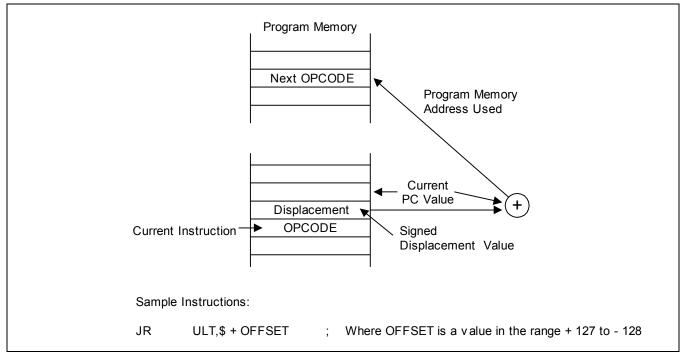
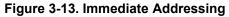



Figure 3-12. Relative Addressing

3.7 Immediate Mode (IM)

In Immediate (IM) addressing mode, the operand value used in the instruction is the value supplied in the operand field itself. Immediate addressing mode is useful for loading constant values into registers.

Program Memory	1
OPERAND OPCODE	-
(The Operand value is in the	Instruction)
Sample Instruction: LD R	,#0AAH

4.1 Overview

ZILOG Establishi ki Alfa An DIXYS Constant

In this section, detailed descriptions of the S3F94C8/S3F94C4 control registers are presented in an easy-to-read format. These descriptions will help familiarize you with the mapped locations in the register file. You can also use them as a quick-reference source when writing application programs.

System and peripheral registers are summarized in Table 4-1. Figure 4-1 illustrates the important features of the standard register description format.

Control register descriptions are arranged in alphabetical order according to register mnemonic. More information about control registers is presented in the context of the various peripheral hardware descriptions in Part II of this manual.

		Address &	Location		R	ESE	ET V	alue	e (Bi	it)	
Register Name	Mnemonic	Address	R/W	7	6	5	4	3	2	1	0
Timer 0 Counter Register	T0CNT	D0H	R	0	0	0	0	0	0	0	0
Timer 0 Data Register	T0DATA	D1H	R/W	1	1	1	1	1	1	1	1
Timer 0 Control Register	T0CON	D2H	R/W	0	0	-	-	0	-	0	0
	Location D3H	is not mappe	ed								
Clock Control Register	CLKCON	D4H	R/W	0	-	-	0	0	-	-	_
System Flags Register	FLAGS	D5H	R/W	х	x	х	x	_	-	_	_
Lc	ocations D6H–D8	3H are not m	apped								
Stack Pointer Register	SP	D9H	R/W	х	х	х	х	х	х	х	x
	Location DAH	is not mapp	ed								
MDS Special Register	MDSREG	DBH	R/W	0	0	0	0	0	0	0	0
Basic Timer Control Register	BTCON	DCH	R/W	0	0	0	0	0	0	0	0
Basic Timer Counter Register	BTCNT	DDH	R	0	0	0	0	0	0	0	0
Test Mode Control Register	FTSTCON	DEH	W	_	_	0	0	0	0	0	0
System Mode Register	SYM	DFH	R/W	_	_	_	_	0	0	0	0

Table 4-1. System and Peripheral Control Register	Table 4-1.	System and	d Peripheral	Control	Registers
---	------------	------------	--------------	---------	-----------

NOTES:

1. -: Not mapped or not used, x: Undefined

2. The register, FTSTCON, is no use. Its value should always be '00H' during the normal operation.

		Address			Bit \	/alu	es /	After	RE	SET	-
Register Name	Mnemonic	Hex	R/W	7	6	5	4	3	2	1	0
Port 0 Data Register	P0	E0H	R/W	0	0	0	0	0	0	0	0
Port 1 Data Register	P1	E1H	R/W	-	_	_	_	_	0	0	0
Port 2 Data Register	P2	E2H	R/W	-	0	0	0	0	0	0	0
Lo	ocations E3H-E5	5H are not m	apped		•	•	•	•			
Port 0 Control High Byte Register	P0CONH	E6H	R/W	0	0	0	0	0	0	0	0
Port 0 Control Register	P0CONL	E7H	R/W	0	0	0	0	0	0	0	0
Port 0 Interrupt Pending Register	P0PND	E8H	R/W	-	-	_	-	0	0	0	0
Port 1 Control Register	P1CON	E9H	R/W	0	0	_	-	0	0	0	0
Port 2 Control High Byte Register	P2CONH	EAH	R/W	_	0	0	0	0	0	0	0
Port 2 Control Low Byte Register	P2CONL	EBH	R/W	0	0	0	0	0	0	0	0
Flash Memory Control Register	FMCON	ECH	R/W	0	0	0	0	_	-	-	0
Flash Memory User Programming Enable Register	FMUSR	EDH	R/W	0	0	0	0	0	0	0	0
Flash Memory Sector Address High Byte Register	FMSECH	EEH	R/W	0	0	0	0	0	0	0	0
Flash Memory Sector Address Low Byte Register	FMSECL	EFH	R/W	0	0	0	0	0	0	0	0
PWM Data Register 1	PWMDATA1	F0H	R/W	0	0	0	0	0	0	0	0
PWM Extension Register	PWMEX	F1H	R/W	0	0	0	0	0	0	0	0
PWM Data Register	PWMDATA	F2H	R/W	0	0	0	0	0	0	0	0
PWM Control Register	PWMCON	F3H	R/W	0	0	_	0	0	0	0	0
Stop Control Register	STOPCON	F4H	R/W	0	0	0	0	0	0	0	0
Lc	ocations F5H–F6	H are not m	apped								
A/D Control Register	ADCON	F7H	R/W	0	0	0	0	0	0	0	0
A/D Converter Data High Byte Register	ADDATAH	F8H	R	x	х	x	x	x	х	x	x
A/D Converter Data Low Byte Register	ADDATAL	F9H	R	0	0	0	0	0	0	x	x
Lo	cations FAH-FF	H are not m	apped	4	•	•	•	•	•		

Table 4-1 System and	d Perinheral Contro	ol Registers (Continued)
Table - 1. System and	a i enplieral contro	or Registers (continueu)

NOTE: – : Not mapped or not used, x: Undefined

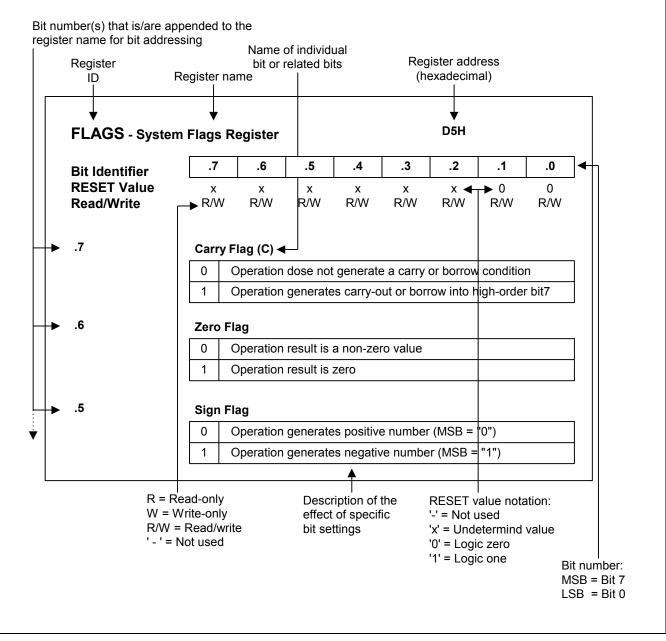


Figure 4-1. Register Description Format

Bit Identifier		7	-	6	.5	.4	.3	.2	.1	.0
RESET Value	(C	()	0	0	0	0	0	0
Read/Write	R/	W	R/	W	R/W	R/W	R/W	R/W	R/W	R/W
7–.4	A/D	Conv	erter	Input	Pin Selection	on Bits				
	0	0	0	0	ADC0 (P0	.0)				
	0	0	0	1	ADC1 (P0).1)				
	0	0	1	0	ADC2 (P0	.2)				
	0	0	1	1	ADC3 (P0	.3)				
	0	1	0	0	ADC4 (P0	.4)				
	0	1	0	1	ADC5 (P0	.5)				
	0	1	1	0	ADC6 (P0	,				
	0	1	1	1	ADC7 (P0					
	1	0	0	0	ADC8 (P2	,				
	1	0	0	1			D internally			
	1	0	1	0			D internally			
	1	0	1	1			D internally			
	1	1	0	0			D internally			
	1	1	0	1			D internally			
	1	1	1	0			D internally			
	1	1	1	1	Connecte	d with GNE	D internally			

.3

End-of-Conversion Status Bit

0	A/D conversion is in progress
1	A/D conversion complete

.2–.1

.0

Clock Source Selection Bit (note)

0	0	$f_{OSC}/16 \ (f_{OSC} \le 10 \text{ MHz})$
0	1	$f_{OSC}/8 \ (f_{OSC} \le 10 \text{ MHz})$
1	0	$f_{OSC}/4 \ (f_{OSC} \le 10 \text{ MHz})$
1	1	$f_{OSC}/1 \ (f_{OSC} \le 4 \text{ MHz})$

Conversion Start Bit

0	No meaning
1	A/D conversion start

NOTE: Maximum ADC clock input = 4 MHz.

Bit Identifier		.7		6	.5	.4	.3	.2	.1	.0							
RESET Value		0		0		0		0		0	0	0	0	0	0	0	
Read/Write	R	R	/W	R/W	R/W	R/W	R/W	R/W	R/W								
7–.4	Wat	Watchdog Timer Function Enable Bit 1 0 1 0 Disable watchdog timer function															
	1	0	1	0	Disable w	atchdog tir	ner functior	า									
		Otl	others Enable watchdog timer function														
3–.2	Bas	Basic Timer Input Clock Selection Code															
	0	0	fos	C/409	96												
	0	1	1 f _{OSC} /1024														
	1	0	fos	C/128	}												
	1	1	Inva	lid se	tting												
1	Bas	Basic Timer 8-Bit Counter Clear Bit															
	0	No e	effect														
		1 Clear the basic timer counter value															

.0

Basic Timer and Timer 0 Divider Clear Bit

0	No effect
1	Clear both dividers

NOTE: When you write a 1 to BTCON.0 (or BTCON.1), the basic timer divider and Timer 0 divider (or basic timer counter) are cleared. The bit is then cleared automatically to 0.

Bit Identifier		7	.6	.5	.4	.3	.2	.1	.0
RESET Value	(0		_	0	0	_	_	_
Read/Write	R/	R/W		_	R/W	R/W	-	-	-
-	0			U. F	tion Frankl	- D:4			
.7	Usc		r IRQ Wake	-					
	0	Ena	ble IRQ for I	main syst	em oscillato	r wake-up	function		
	1	Disa	able IRQ for	main syst	tem oscillate	or wake-up	function		
.6–.5	Not	used	for S3F94C	8/S3F940	24				
.4–.3	Divi	ded k	by Selection	n Bits for	CPU Clock	Frequenc	ÿ		
	0	0	Divide by 1	16 (f _{OSC} /1	6)				
	0	1	Divide by 8	8 (f _{OSC} /8)					
	1	0	Divide by 2	2 (f _{OSC} /2)					
	1	1	Non-divide	d clock (f	(acc)				

.2–.0

Not used for S3F94C8/S3F94C4

PS031503-0115

4.1.4 FLAGS — System Flags Register (D5H)									
Bit Identifier		7	.6	.5	.4	.3	.2	.1	.0
RESET Value		х	x	х	х	_	_	_	_
Read/Write	R	/W	R/W	R/W	R/W	-	-	-	_
.7	Carry Flag (C) 0 Operation does not generate a carry or borrow condition								
	1	Ope	ration gene	erates a car	ry-out or be	orrow into h	igh-order l	oit 7	
.6	Zero 0	o Flag		It is a non-z	zero value				
	1								
.5	Sigi	n Flag							
	0					er (MSB =			
	1	Ope	ration gene	erates a neo	gative num	ber (MSB =	1)		
.4	Ove	rflow	Flag (V)						
	0	Ope	ration resu	It is \leq +'	127 or ≥	-128			
	1 Operation result is $> +127$ or < -128								
		•							
.3–.0	Not	Not used for S3F94C8/S3F94C4							

NOTE: The unused bits .3-.0 should always be kept as 0 in normal operation; otherwise it may be cause error execution.

4.1.5 FMCON — Flash Memory Control Register (ECH)

Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0
Reset Value	0	0	0	0	-	-	_	0
Read/Write	R/W	R/W	R/W	R/W	_	_	_	R/W

.7–.4

Flash Memory Mode Selection Bits

0	1	0	1	Programming mode
1	0	1	0	Sector erase mode
0	1	1	0	Hard lock mode
(Other values		s	Not available

.0

Flash Operation Start Bit

0	Operation stop
	Operation start (This bit will be cleared automatically just after the corresponding operator completed).

Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0
Reset Value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
.7–.0	Flash Mer	nory Secto	r Address I	Bits (High E	Byte)			
The 15th - 8th bits to select a sector of Flash ROM								

4.1.6 FMSECH — Flash Memory Sector Address High Byte Register (EEH)

NOTE: The high-byte Flash memory sector address pointer value is the higher eight bits of the 16-bit pointer address.

4.1.7 FMSECL — Flash Memory Sector Address Low Byte Register (EFH)

Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0
Reset Value	0	0	0	0	0	0	0	0
Read/Write	R/W							

.7	Flash Memory Sector Address Bit (Low Byte)
	The 7 th bit to select a sector of Flash ROM

Bits 6–0 Don't care

NOTE: The low-byte Flash memory sector address pointer value is the lower eight bits of the 16-bit pointer address.

.6–.0

4.1.8 FMUSR — Flash Memory User Programming Enable Register (EDH)

Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0
Reset Value	0	0	0	0	0	0	0	0
Read/Write	R/W							

.7–.0

Flash Memory User Programming Enable Bits

10100101	Enable user programming mode
Other values	Disable user programming mode

4.1.9 P0CONH — Port 0 Control High Byte Register (E6H)

-										
.7		.6	.5	.4	.3	.2	.1	.0		
()	0	0	0	0	0	0	0		
R/	W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Port 0, P0.7/ADC7 Configuration Bits										
0	0	0 Schmitt trigger input; pull-up enable								
0	1	Schmitt trigger input								
1	0	Push-pull output								
1	1		A/D converter input (ADC7); Schmitt trigger input off							
Port 0, P0.6/ADC6/PWM Configuration Bits										
	(R/ 0	0 R/W 0 0 0 1 1 0	0 0 R/W R/W 0 0 1 0 1 0 1 1	0 0 0 R/W R/W R/W Port 0, I Port 0, I 0 0 S 0 1 A/D convertion	0 0 0 0 0 R/W R/W R/W R/W R/W Port 0, P0.7/ADC7 0 0 Schmitt trigg 0 1 Schmitt trigg 0 1 0 Pu 1 1	0 0	0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W Port 0, P0.7/ADC7 Configuration Bits 0 0 Schmitt trigger input; pull-up enab 0 1 Schmitt trigger input 1 0 Push-pull output 1 1 A/D converter input (ADC7); Schmitt trigger	0 0		

с -	'	4	

0	0	Schmitt trigger input; pull-up enable
0	1	Alternative function (PWM output)
1	0	Push-pull output
1	1	A/D converter input (ADC6); Schmitt trigger input off

.3–.2

Port 0, P0.5/ADC5 Configuration Bits

0	0	Schmitt trigger input; pull-up enable						
0	1	Schmitt trigger input						
1	0	Push-pull output						
1	1	A/D converter input (ADC5); Schmitt trigger input off						

.1–.0

Port 0, P0.4/ADC4 Configuration Bits

0	0	Schmitt trigger input; pull-up enable						
0	1	Schmitt trigger input						
1	0	Push-pull output						
1	1	A/D converter input (ADC4); Schmitt trigger input off						

4.1.10 P0CONL — Port 0 Control Low Byte Register (E7H)

Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0
RESET Value	0	0	0	0	0	0	0	0
Read/Write	R/W							

.7–.6

Port 0, P0.3/ADC3 Configuration Bits

0	0	Schmitt trigger input						
0	1	Schmitt trigger input; pull-up enable						
1	0	Push-pull output						
1	1	A/D converter input (ADC3); Schmitt trigger input off						

.5–.4

Port 0, P0.2/ADC2 Configuration Bits

0	0	Schmitt trigger input					
0	1	Schmitt trigger input; pull-up enable					
1	0	Push-pull output					
1	1	A/D converter input (ADC2); Schmitt trigger input off					

.3–.2

Port 0, P0.1/ADC1/INT1 Configuration Bits

0	0	Schmitt trigger input/falling edge interrupt input
0	1	Schmitt trigger input; pull-up enable/falling edge interrupt input
1	0	Push-pull output
1	1	A/D converter input (ADC1); Schmitt trigger input off

.1–.0

Port 0, P0.0/ADC0/INT0 Configuration Bits

0	0	Schmitt trigger input/falling edge interrupt input						
0	1	Schmitt trigger input; pull-up enable/falling edge interrupt input						
1	0	Push-pull output						
1	1	A/D converter input (ADC0); Schmitt trigger input off						

Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0
RESET Value	_	_	_	_	0	0	0	0
Read/Write	-	_	_	_	R/W	R/W	R/W	R/W
.7–.4	Not used for the S3F94C8/S3F94C4							
.3	Port 0.1/ADC1/INT1 Interrupt Enable Bit							
	0 INT1 falling edge interrupt disable							
	1 INT1 falling edge interrupt enable							

4.1.11 P0PND — Port 0 Interrupt Pending Register (E8H)

.2

Port 0.1/ADC1/INT1 Interrupt Pending Bit

0	No interrupt pending (when read)
0	Pending bit clear (when write)
1	Interrupt is pending (when read)
1	No effect (when write)

.1

Port 0.0/ADC0/INT0 Interrupt Enable Bit

0	INT0 falling edge interrupt disable
1	INT0 falling edge interrupt enable

.0

Port 0.0/ADC0/INT0 Interrupt Pending Bit

0	No interrupt pending (when read)
0	Pending bit clear (when write)
1	Interrupt pending (when read)
1	No effect (when write)

4.1.12 P1CON — Port 1 Control Register (E9H)									
Bit Identifier		7	.6	.5	.4	.3	.2	.1	.0
RESET Value	()	0	_		0	0	0	0
Read/Write	R/	W	R/W	-	-	R/W	R/W	R/W	R/W
.7	Part 1.1 N-channel open-drain Enable Bit O Configure P1.1 as a push-pull output								
.6	.6 Configure P1.1 as a n-channel open-drain output Port 1.0 N-channel open-drain Enable Bit								
	0			Conf	igure P1.0	as a push-	pull output		
	1			Configure	P1.0 as a n	-channel o	pen-drain c	output	
.5–.4 .3–.2	Not used for S3F94C8/S3F94C4 Port 1, P1.1 Interrupt Pending Bits								
	0 0 Schmitt trigger input;								
	0 1 Schmitt trigger input; pull-up enable								
	1 0 Output								
	1 1 Schmitt trigger input; pull-down enable								
.1–.0	1–.0 Port 1, P1.0 Configuration Bits								
	0	0				nitt trigger i	-		
	0	1		S	chmitt trigg		ull-up enabl	е	
	1 0 Output								

NOTE: When you use external oscillator, P1.0, P1.1 must be set to output port to prevent current consumption.

1

1

Schmitt trigger input; pull-down enable

4.1.13 P2CONH — Port 2 Control High Byte Register (EAH)										
Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0		
RESET Value	-	0	0	0	0	0	0	0		
Read/Write	-	R/W								
.7	Not used for the S3F94C8/S3F94C4									
.6–.4	Port 2, P2.6/ADC8/CLO Configuration Bits									

0	0	0	Schmitt trigger input; pull-up enable
0	0	1	Schmitt trigger input
0	1	х	ADC input
1	0	0	Push-pull output
1	0	1	Open-drain output; pull-up enable
1	1	0	Open-drain output
1	1	1	Alternative function; CLO output

.3–.2

Port 2, 2.5 Configuration Bits

0	0	Schmitt trigger input; pull-up enable
0	1	Schmitt trigger input
1	0	Push-pull output
1	1	Open-drain output

.1–.0

Port 2, 2.4 Configuration Bits

	0	0	Schmitt trigger input; pull-up enable
(0	1	Schmitt trigger input
	1	0	Push-pull output
	1	1	Open-drain output

NOTE: When noise problem is important issue, you had better not use CLO output.

4.1.14 P2CONL — Port 2 Control Low Byte Register (EBH)

Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0
RESET Value	0	0	0	0	0	0	0	0
Read/Write	R/W							

.7–.6

Part 2, P2.3 Configuration Bits

0	0	Schmitt trigger input; pull-up enable
0	1	Schmitt trigger input
1	0	Push-pull output
1	1	Open-drain output

.5–.4

Port 2, P2.2 Configuration Bits

0	0	Schmitt trigger input; pull-up enable
0	1	Schmitt trigger input
1	0	Push-pull output
1	1	Open-drain output

.3–.2

Port 2, P2.1 Configuration Bits

0	0	Schmitt trigger input; pull-up enable
0	1	Schmitt trigger input
1	0	Push-pull output
1	1	Open-drain output

.1–.0

Port 2, P2.0 Configuration Bits

0	0	Schmitt trigger input; pull-up enable
0	1	Schmitt trigger input
1	0	Push-pull output
1	1	T0 match output

4.1.15 PWMCON — PW	M Co	ntrol	Register	(F3H)							
Bit Identifier	.7		.6	.5	.4	.3	.2	.1	.0		
RESET Value	0		0	_	0	0	0	0	0		
Read/Write	R/	W	R/W	-	R/W	R/W	R/W	R/W	R/W		
.7–.6	PWM Input Clock Selection Bits										
	0 0 f _{OSC} /64										
	0	1				f _{OSC} /8					
	1	0				f _{OSC} /2					
	1	1				f _{OSC} /1					
.5	Not	used f	for S3F94C	8/S3F94C	4						
.4		[FA Reload						
	0 Reload from extension upcounter overflow										
	1 Reload from base upcounter overflow										
.3				ſ	PWM Coun	tor Cloar Bi	it				
.0	0					o effect					
	1 Clear the PWM counter (when write)										
.2	PWM Counter Enable Bit										
	0 Stop counter										
	1 Start (Resume countering)										
.1		PWM Overflow Interrupt Enable Bit (8-Bit Overflow)									
	0 Disable interrupt										
	1 Enable interrupt										
_											
.0					Overflow Int	-	_]		
	0 No interrupt pending (when read)										

0	Clear pending bit (when write)
1	Interrupt is pending (when read)
1	No effect (when write)

NOTES:

1. PWMCON.3 is not auto-cleared. You must pay attention when clear pending bit. (refer to page 11-12).

2. PWMCON.5 should always be set to 0.

4.1.16 PWMEX — PWM Extension Register (F1H)

Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0			
RESET Value	0	0	0	0	0	0	0	0			
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
.7–.2	PWM Extension Bits PWM extension bits for 6+6 resolution and 8+6 resolution; Not used in 6+2 resolution										
.1–.0	PWM Base/extension Control bits:										

0	0	Base 6-bit (PWMDATA.72) + Extension 2-bit (PWMDATA.10)
1	0	
0	1	Base 6-bit (PWMDATA1.50) + Extension 6-bit (PWMEX.72)
1	1	Base 8-bit (PWMDATA1.70) + Extension 6-bit (PWMEX.72)

4.1.17 STOPCON — Stop Mode Control Register (E4H)

Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0
RESET Value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
.7–.0	Watchdog Timer Function Enable Bit							

	-
10100101	Enable STOP instruction
Other value	Disable STOP instruction

NOTE: When the STOPCON Register is not #0A5H value, if you use STOP instruction, PC is changed to reset address.

4.1.18 SYM — System Mode Register (DFH)

Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0
RESET Value	—	_	_	_	0	0	0	0
Read/Write	-	-	-	-	R/W	R/W	R/W	R/W

.7–.4

Not used for S3F94C8/S3F94C4

.3

Global Interrupt Enable Bit

0	Disable all interrupts
1	Enable all interrupt

.2–.0

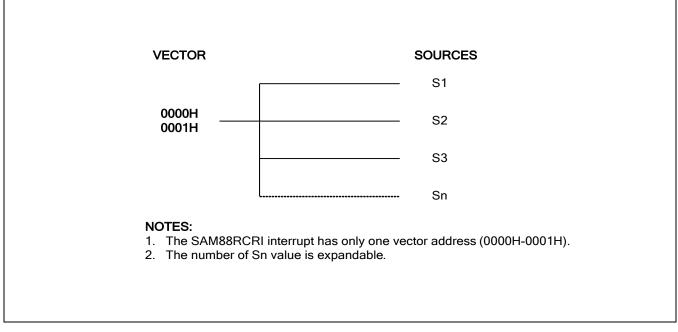
Page Select Bits

0	0	0	Page 0
0	0	1	Page 1 (Not used for S3F94C8/S3F94C4)
0	1	0	Page 2 (Not used for S3F94C8/S3F94C4)
0	1	1	Page 3 (Not used for S3F94C8/S3F94C4)

4.1.19 T0CON — Timer 0 Control Register (D2H)											
Bit Identifier	-	7	.6	.5	.4	.3	.2	.1	.0		
RESET Value	0		0	_	_	0	_	0	0		
Read/Write	R/W		R/W	-	-	R/W	-	R/W	R/W		
.7–.6		Timer 0 Input Clock Selection Bits									
	0	0 f _{OSC} /4096									
	0	1				f _{OSC} /256					
	1	0				f _{OSC} /8					
	1	1				f _{OSC} /1					
			I								
.5–.4	Not	used	for the S3F	94C8/S3F	94C4						
.3				Ti	mer 0 Cou	nter Clear I	Bit				
	0	0 No effect									
	1			Clear	the Timer	0 counter (when write))			
									1		
.2	Not	used	for the S3F	94C8/S3F9	94C4						
.1	0			lin		upt Enable					
	0					ble interrupt					
	1				Enab	le interrupt					
.0	Timer 0 Interrupt Pending Bit (Match interrupt)										
	0 No interrupt pending (when read)										
	0	0 Clear pending bit (when write)									
	1	1 Interrupt is pending (when read)									
	1 No effect (when write)										

NOTES:

1. T0CON.3 is not auto-cleared. You must pay attention when clear pending bit. (refer to page 10-12)


2. To use T0 match output, set T0CON.3 to 1. (refer to page 10-7)

5 Interrupt Structure

5.1 Overview

The SAM88RCRI interrupt structure has two basic components: a vector, and sources. The number of interrupt sources can be serviced through an interrupt vector which is assigned in ROM address 0000H.

Figure 5-1. S3F9-Series Interrupt Type

5.2 Interrupt Processing Control Points

Interrupt processing can be controlled in two ways: either globally, or by specific interrupt source. The system-level control points in the interrupt structure are therefore:

Global interrupt enable and disable (by EI and DI instructions)

Interrupt source enable and disable settings in the corresponding peripheral control register(s)

5.3 Enable/Disable Interrupt Instructions (EI, DI)

The system mode register, SYM (DFH), is used to enable and disable interrupt processing.

SYM.3 is the enable and disable bit for global interrupt processing respectively, by modifying SYM.3.

NOTE

The system initialization routine executed after a reset must always contain an EI instruction to globally enable the interrupt structure.

Although you can manipulate SYM.3 directly to enable and disable interrupts during normal operation, we recommend that you use the EI and DI instructions for this purpose.

5.4 Interrupt Pending Function Types

When the interrupt service routine has executed, the application program's service routine must clear the appropriate pending bit before the return from interrupt subroutine (IRET) occurs.

5.5 Interrupt Priority

Because there is not an interrupt priority register in SAM88RCRI, the order of service is determined by a sequence of source which is executed in interrupt service routine.

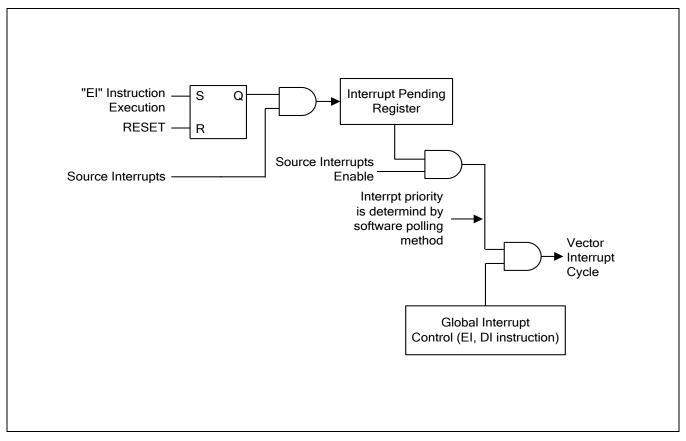


Figure 5-2. Interrupt Function Diagram

5.6 Interrupt Source Service Sequence

The interrupt request polling and servicing sequence is as follows:

- 1. A source generates an interrupt request by setting the interrupt request pending bit to 1.
- 2. The CPU generates an interrupt acknowledge signal.
- 3. The service routine starts and the source's pending flag is cleared to 0 by software.
 - 4. Interrupt priority must be determined by software polling method.

5.7 Interrupt Service Routines

Before an interrupt request can be serviced, the following conditions must be met:

Interrupt processing must be enabled (EI, SYM.3 = 1)

Interrupt must be enabled at the interrupt's source (peripheral control register)

If all of the above conditions are met, the interrupt request is acknowledged at the end of the instruction cycle. The CPU then initiates an interrupt machine cycle that completes the following processing sequence:

- 1. Reset (clear to 0) the global interrupt enable bit in the SYM register (DI, SYM.3 = 0) to disable all subsequent interrupts.
- 2. Save the program counter and status flags to stack.
- 3. Branch to the interrupt vector to fetch the service routine's address.
- 4. Pass control to the interrupt service routine.

When the interrupt service routine is completed, an Interrupt Return instruction (IRET) occurs. The IRET restores the PC and status flags and sets SYM.3 to 1 (EI), allowing the CPU to process the next interrupt request.

5.8 Generating interrupt Vector Addresses

The interrupt vector area in the ROM contains the address of the interrupt service routine. Vectored interrupt processing follows this sequence:

- 1. Push the program counter's low-byte value to stack.
- 2. Push the program counter's high-byte value to stack.
- 3. Push the FLAGS register values to stack.
- 4. Fetch the service routine's high-byte address from the vector address 0000H.
- 5. Fetch the service routine's low-byte address from the vector address 0001H.
- 6. Branch to the service routine specified by the 16-bit vector address.

5.9 S3F94C8/S3F94C4 Interrupt Structure

The S3F94C8/S3F94C4 microcontroller has four peripheral interrupt sources:

PWM overflow

Timer 0 match

P0.0 external interrupt

P0.1 external interrupt

Figure 5-3. S3F94C8/S3F94C4 Interrupt Structure

5.10 Peripheral Interrupt Control Registers

For each interrupt source there is one or more corresponding peripheral control registers that let you control the interrupt generated by the related peripheral (see Table 5-1).

Interrupt Source	Register(s)	Register Location(s)
P0.0 external interrupt P0.1 external interrupt	P0CONL P0PND	E7H E8H
Timer 0 match interrupt	T0CON T0DATA	D2H D1H
PWM overflow interrupt	PWMCON PWMDATA PWMDATA1	F3H F2H F0H

Table 5-1. Interrupt Source Control and Data Registers

6.1 Overview

The SAM88RCRI instruction set is designed to support the large register file. It includes a full complement of 8-bit arithmetic and logic operations. There are 41 instructions. No special I/O instructions are necessary because I/O control and data registers are mapped directly into the register file. Flexible instructions for bit addressing, rotate, and shift operations complete the powerful data manipulation capabilities of the SAM88RCRI instruction set.

6.2 Register Addressing

To access an individual register, an 8-bit address in the range 0–255 or the 4-bit address of a working register is specified. Paired registers can be used to construct 16-bit program memory or data memory addresses. For detailed information about register addressing, please refer to Chapter 2, "Address Spaces".

6.3 Addressing Modes

There are six addressing modes: Register (R), Indirect Register (IR), Indexed (X), Direct (DA), Relative (RA), and Immediate (IM). For detailed descriptions of these addressing modes, please refer to Chapter 3, "Addressing Modes".

Vnemonic	Operands	Instruction
		Load Instructions
CLR	dst	Clear
LD	dst,src	Load
LDC	dst,src	Load program memory
LDE	dst,src	Load external data memory
LDCD	dst,src	Load program memory and decrement
LDED	dst,src	Load external data memory and decrement
LDCI	dst,src	Load program memory and increment
LDEI	dst,src	Load external data memory and increment
POP	dst	Pop from stack
PUSH	src	Push to stack
		Arithmetic Instructions
ADC	dst,src	Add with carry
ADD	dst,src	Add
СР	dst,src	Compare
DEC	dst	Decrement
INC	dst	Increment
SBC	dst,src	Subtract with carry
SUB	dst,src	Subtract
		Logic Instructions
AND	dst,src	Logical AND
COM	dst	Complement
OR	dst,src	Logical OR
XOR	dst,src	Logical exclusive OR

Table 6-1. Instruction Group Summary

		n Group Summary (Continued)
Mnemonic	Operands I	nstruction
	Program	Control Instructions
CALL	dst	Call procedure
IRET		Interrupt return
JP	cc,dst	Jump on condition code
JP	dst	Jump unconditional
JR	cc,dst	Jump relative on condition code
RET		Return
	Bit Man	pulation Instructions
ТСМ	dst,src	Test complement under mask
ТМ	dst,src	Test under mask
	Rotate a	and Shift Instructions
RL	dst	Rotate left
RLC	dst	Rotate left through carry
RR	dst	Rotate right
RRC	dst	Rotate right through carry
SRA	dst	Shift right arithmetic
	CPU (Control Instructions
CCF		Complement carry flag
DI		Disable interrupts
EI		Enable interrupts
IDLE		Enter Idle Mode
NOP		No operation
RCF		Reset carry flag
SCF		Set carry flag
STOP		Enter Stop Mode

Table 6-1. Instruction Group Summary (Continued)

6.4 Flags Register

The flags register FLAGS contains eight bits that describe the current status of CPU operations. Four of these bits, FLAGS.4–FLAGS.7, can be tested and used with conditional jump instructions;

FLAGS register can be set or reset by instructions as long as its outcome does not affect the flags, such as, Load instruction. Logical and Arithmetic instructions such as, AND, OR, XOR, ADD, and SUB can affect the Flags register. For example, the AND instruction updates the Zero, Sign and Overflow flags based on the outcome of the AND instruction uses the Flags register as the destination, then simultaneously, two write will occur to the Flags register producing an unpredictable result.

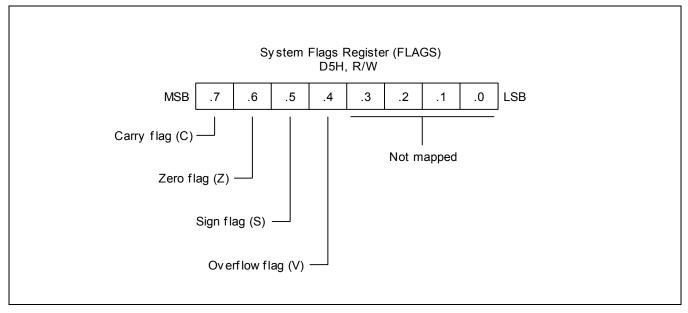


Figure 6-1. System Flags Register (FLAGS)

6.5 Flag Descriptions

6.5.1 Overflow Flag (FLAGS.4, V)

The V flag is set to 1 when the result of a two's-complement operation is greater than +127 or less than –128. It is also cleared to 0 following logic operations.

6.5.2 Sign Flag (FLAGS.5, S)

Following arithmetic, logic, rotate, or shift operations, the sign bit identifies the state of the MSB of the result. A logic zero indicates a positive number and a logic one indicates a negative number.

6.5.3 Zero Flag (FLAGS.6, Z)

For arithmetic and logic operations, the Z flag is set to 1 if the result of the operation is zero. For operations that test register bits, and for shift and rotate operations, the Z flag is set to 1 if the result is logic zero.

6.5.4 Carry Flag (FLAGS.7, C)

The C flag is set to 1 if the result from an arithmetic operation generates a carry-out from or a borrow to the bit 7 position (MSB). After rotate and shift operations, it contains the last value shifted out of the specified register. Program instructions can set, clear, or complement the carry flag.

6.6 Instruction Set Notation

Table 6-2	Flag	Notation	Conventions
-----------	------	----------	-------------

Flag	Description
С	Carry flag
Z	Zero flag
S	Sign flag
V	Overflow flag
0	Cleared to logic zero
1	Set to logic one
*	Set or cleared according to operation
_	Value is unaffected
х	Value is undefined

Table 6-3. Instruction Set Symbols

Symbol	Description
dst	Destination operand
src	Source operand
@	Indirect register address prefix
PC	Program counter
FLAGS	Flags register (D5H)
#	Immediate operand or register address prefix
н	Hexadecimal number suffix
D	Decimal number suffix
В	Binary number suffix
орс	Opcode

Notation	Description	Actual Operand Range
сс	Condition code	See list of condition codes in Table 6-6.
r	Working register only	Rn (n = 0–15)
rr	Working register pair	RRp (p = 0, 2, 4,, 14)
R	Register or working register	reg or Rn (reg = 0–255, n = 0–15)
RR	Register pair or working register pair	reg or RRp (reg = 0–254, even number only, where $p = 0, 2,, 14$)
lr	Indirect working register only	@Rn (n = 0–15)
IR	Indirect register or indirect working register	@Rn or @reg (reg = 0–255, n = 0–15)
Irr	Indirect working register pair only	@RRp (p = 0, 2,, 14)
IRR	Indirect register pair or indirect working register pair	@RRp or @reg (reg = 0–254, even only, where p = 0, 2,, 14)
х	Indexed addressing mode	#reg[Rn] (reg = 0–255, n = 0–15)
XS	Indexed (short offset) addressing mode	#addr[RRp] (addr = range –128 to +127, where p = 0, 2,, 14)
xl	Indexed (long offset) addressing mode	#addr [RRp] (addr = range 0–8191, where p = 0, 2,, 14)
da	Direct addressing mode	addr (addr = range 0-8191)
ra	Relative addressing mode	addr (addr = number in the range +127 to –128 that is an offset relative to the address of the next instruction)
im	Immediate addressing mode	#data (data = 0–255)

Table 6-4. Instruction Notation Conventions

	-	0	1	2	3	4	5	6	7	
U	0	DEC R1	DEC IR1	ADD r1,r2	ADD r1,Ir2	ADD R2,R1	ADD IR2,R1	ADD R1,IM		
Р	1	RLC R1	RLC IR1	ADC r1,r2	ADC r1,Ir2	ADC R2,R1	ADC IR2,R1	ADC R1,IM		
Ρ	2	INC R1	INC IR1	SUB r1,r2	SUB r1,Ir2	SUB R2,R1	SUB IR2,R1	SUB R1,IM		
E	3	JP IRR1		SBC r1,r2	SBC r1,Ir2	SBC R2,R1	SBC IR2,R1	SBC R1,IM		
R	4			OR r1,r2	OR r1,Ir2	OR R2,R1	OR IR2,R1	OR R1,IM		
	5	POP R1	POP IR1	AND r1,r2	AND r1,Ir2	AND R2,R1	AND IR2,R1	AND R1,IM		
N	6	COM R1	COM IR1	TCM r1,r2	TCM r1,Ir2	TCM R2,R1	TCM IR2,R1	TCM R1,IM		
Ι	7	PUSH R2	PUSH IR2	TM r1,r2	TM r1,Ir2	TM R2,R1	TM IR2,R1	TM R1,IM		
В	8								LD r1, x, r2	
В	9	RL R1	RL IR1						LD r2, x, r1	
L	A			CP r1,r2	CP r1,Ir2	CP R2,R1	CP IR2,R1	CP R1,IM	LDC r1, Irr2, xL	
E	В	CLR R1	CLR IR1	XOR r1,r2	XOR r1,lr2	XOR R2,R1	XOR IR2,R1	XOR R1,IM	LDC r2, Irr2, xL	
	С	RRC R1	RRC IR1		LDC r1,Irr2				LD r1, lr2	
н	D	SRA R1	SRA IR1		LDC r2,Irr1			LD IR1,IM	LD Ir1, r2	
E	Е	RR R1	RR IR1	LDCD r1,Irr2	LDCI r1,Irr2	LD R2,R1	LD R2,IR1	LD R1,IM	LDC r1, Irr2, xs	
х	F					CALL IRR1	LD IR2,R1	CALL DA1	LDC r2, Irr1, xs	

Table 6-5. Opcode Quick Reference

	OPCODE MAP									
	LOWER NIBBLE (HEX)									
	_	8	9	А	В	С	D	E	F	
U	0	LD r1,R2	LD r2,R1		JR cc,RA	LD r1,IM	JP cc,DA	INC r1		
Р	1									
Р	2									
E	3									
R	4									
	5									
N	6								IDLE	
I	7								STOP	
В	8								DI	
В	9								EI	
L	A								RET	
E	В								IRET	
	С								RCF	
Н	D								SCF	
E	E								CCF	
Х	F	LD r1,R2	LD r2,R1		JR cc,RA	LD r1,IM	JP cc,DA	INC r1	NOP	

Table 6-5. Opcode Quick Reference (Continued)

6.7 Condition Codes

The opcode of a conditional jump always contains a 4-bit field called the condition code (cc). This specifies under which conditions it is to execute the jump. For example, a conditional jump with the condition code for "equal" after a compare operation only jumps if the two operands are equal. Condition codes are listed in Table 6-6.

The carry (C), zero (Z), sign (S), and overflow (V) flags are used to control the operation of conditional jump instructions.

Binary	Mnemonic	Description	Flags Set
0000	F	Always false	-
1000	Т	Always true	-
0111 ⁽¹⁾	С	Carry	C = 1
1111 ⁽¹⁾	NC	No carry	C = 0
0110 ⁽¹⁾	Z	Zero	Z = 1
1110 ⁽¹⁾	NZ	Not zero	Z = 0
1101	PL	Plus	S = 0
0101	MI	Minus	S = 1
0100	OV	Overflow	V = 1
1100	NOV	No overflow	V = 0
0110 ⁽¹⁾	EQ	Equal	Z = 1
1110 ⁽¹⁾	NE	Not equal	Z = 0
1001	GE	Greater than or equal	(S XOR V) = 0
0001	LT	Less than	(S XOR V) = 1
1010	GT	Greater than	(Z OR (S XOR V)) = 0
0010	LE	Less than or equal	(Z OR (S XOR V)) = 1
1111 ⁽¹⁾	UGE	Unsigned greater than or equal	C = 0
0111 ⁽¹⁾	ULT	Unsigned less than	C = 1
1011	UGT	Unsigned greater than	(C = 0 AND Z = 0) = 1
0011	ULE	Unsigned less than or equal	(C OR Z) = 1

NOTES:

- It indicates condition codes that are related to two different mnemonics but which test the same flag.
 For example, Z and EQ are both true if the zero flag (Z) is set, but after an ADD instruction, Z would probably be used; after a CP instruction, however, EQ would probably be used.
- 2. For operations involving unsigned numbers, the special condition codes UGE, ULT, UGT, and ULE must be used.

6.8 Instruction Descriptions

This section contains detailed information and programming examples for each instruction in the SAM87RI instruction set. Information is arranged in a consistent format for improved readability and for fast referencing. The following information is included in each instruction description:

Instruction name (mnemonic)

Full instruction name

Source/destination format of the instruction operand

Shorthand notation of the instruction's operation

Textual description of the instruction's effect

Specific flag settings affected by the instruction

Detailed description of the instruction's format, execution time, and addressing mode(s)

Programming example(s) explaining how to use the instruction

6.8.1 ADC — Add with Carry

ADC dst,src

Operation: dst \leftarrow dst + src + c

The source operand, along with the setting of the carry flag, is added to the destination operand and the sum is stored in the destination. The contents of the source are unaffected. Two's-complement addition is performed. In multiple precision arithmetic, this instruction permits the carry from the addition of low-order operands to be carried into the addition of high-order operands.

Flags: C: Set if there is a carry from the most significant bit of the result; cleared otherwise.

- Z: Set if the result is 0; cleared otherwise.
- S: Set if the result is negative; cleared otherwise.
- V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and the result is of the opposite sign; cleared otherwise.

Format:

		_		Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
орс	dst src			2	4	12	r	r
					6	13	r	lr
			_					
орс	src	dst		3	6	14	R	R
			-		6	15	R	IR
орс	dst	src		3	6	16	R	IM

Examples:

Given: R1 = 10H, R2 = 03H, C flag = 1, register 01H = 20H, register 02H = 03H, and register 03H = 0AH:

ADC	R1,R2	\rightarrow	R1 = 14H, R2 = 03H
ADC	R1,@R2	\rightarrow	R1 = 1BH, R2 = 03H
ADC	01H,02H	\rightarrow	Register 01H = 24H, register 02H = 03H
ADC	01H,@02H	\rightarrow	Register 01H = 2BH, register 02H = 03H
ADC	01H,#11H	\rightarrow	Register 01H = 32H

In the first example, destination register R1 contains the value 10H, the carry flag is set to 1, and the source working register R2 contains the value 03H. The statement "ADC R1,R2" adds 03H and the carry flag value (1) to the destination value 10H, leaving 14H in register R1.

6.8.2 ADD — Add

ADD dst,src

Operation: dst \leftarrow dst + src

The source operand is added to the destination operand and the sum is stored in the destination. The contents of the source are unaffected. Two's-complement addition is performed.

Flags:

- **C:** Set if there is a carry from the most significant bit of the result; cleared otherwise.
- **Z:** Set if the result is 0; cleared otherwise.
- **S:** Set if the result is negative; cleared otherwise.

V: Set if arithmetic overflow occurred, that is, if both operands are of the same sign and the result is of the opposite sign; cleared otherwise.

Format:

			Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
орс	dst src		2	4	02	r	r
				6	03	r	lr
орс	src	dst	3	6	04	R	R
				6	05	R	IR
орс	dst	SrC	3	6	06	R	IM

Examples:

Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:

ADD	R1,R2	\rightarrow	R1 = 15H, R2 = 03H
ADD	R1,@R2	\rightarrow	R1 = 1CH, R2 = 03H
ADD	01H,02H	\rightarrow	Register 01H = 24H, register 02H = 03H
ADD	01H,@02H	\rightarrow	Register 01H = 2BH, register 02H = 03H
ADD	01H,#25H	\rightarrow	Register 01H = 46H

In the first example, destination working register R1 contains 12H and the source working register R2 contains 03H. The statement "ADD R1,R2" adds 03H to 12H, leaving the value 15H in register R1.

6.8.3 AND — Logical AND

AND dst,src

Operation: dst \leftarrow dst AND src

The source operand is logically ANDed with the destination operand. The result is stored in the destination. The AND operation results in a 1 bit being stored whenever the corresponding bits in the two operands are both logic ones; otherwise a 0 bit value is stored. The contents of the source are unaffected.

Flags:

- C: Unaffected.
- **Z:** Set if the result is 0; cleared otherwise.
- **S:** Set if the result bit 7 is set; cleared otherwise.
- V: Always cleared to 0.

Format:

					Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
	орс	dst src			2	4	52	r	r
						6	53	r	lr
_									
	орс	src	dst		3	6	54	R	R
						6	55	R	IR
				_					
	орс	dst	SrC		3	6	56	R	IM

Examples:

Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:

AND	R1,R2	\rightarrow	R1 = 02H, R2 = 03H
AND	R1,@R2	\rightarrow	R1 = 02H, R2 = 03H
AND	01H,02H	\rightarrow	Register 01H = 01H, register 02H = 03H
AND	01H,@02H	\rightarrow	Register 01H = 00H, register 02H = 03H
AND	01H,#25H	\rightarrow	Register 01H = 21H

In the first example, destination working register R1 contains the value 12H and the source working register R2 contains 03H. The statement "AND R1,R2" logically ANDs the source operand 03H with the destination operand value 12H, leaving the value 02H in register R1.

6.8.4 CALL — Call Procedure

CALL dst

Operation: SP

@SP	←	PCL
SP	\leftarrow	SP –1
@SP	←	PCH
PC	\leftarrow	dst

 \leftarrow SP - 1

The current contents of the program counter are pushed onto the top of the stack. The program counter value used is the address of the first instruction following the CALL instruction. The specified destination address is then loaded into the program counter and points to the first instruction of a procedure. At the end of the procedure the return instruction (RET) can be used to return to the original program flow. RET pops the top of the stack back into the program counter.

Flags: No flags are affected.

Format:

			Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
орс	d	st	3	14	F6	DA
орс	dst		2	12	F4	IRR

Examples: Given: R0 = 15H, R1 = 21H, PC = 1A47H, and SP = 0B2H:

CALL	1521H	\rightarrow	SP = 0B0H (Memory locations 00H = 1AH, 01H = 4AH, where 4AH is the address that follows the instruction.)
CALL	@RR0	\rightarrow	SP = 0B0H (00H = 1AH, 01H = 49H)

In the first example, if the program counter value is 1A47H and the stack pointer contains the value 0B2H, the statement "CALL 1521H" pushes the current PC value onto the top of the stack. The stack pointer now points to memory location 00H. The PC is then loaded with the value 1521H, the address of the first instruction in the program sequence to be executed.

If the contents of the program counter and stack pointer are the same as in the first example, the statement "CALL @RR0" produces the same result except that the 49H is stored in stack location 01H (because the two-byte instruction format was used). The PC is then loaded with the value 1521H, the address of the first instruction in the program sequence to be executed.

6.8.5 CCF — Complement Carry Flag CCF **Operation:** $C \leftarrow NOT C$ The carry flag (C) is complemented. If C = 1, the value of the carry flag is changed to logic zero; if C = 0, the value of the carry flag is changed to logic one. Flags: **C**:Complemented. No other flags are affected. Format: Opcode Bytes Cycles (Hex) 1 4 EF opc

Example: Given: The carry flag = 0:

CCF

If the carry flag = 0, the CCF instruction complements it in the FLAGS register (0D5H), changing its value from logic zero to logic one.

6.8.6 CLR — Clear

CLR	dst
Operation:	dst ← 0
	The destination location is cleared to 0.

Flags: No flags are affected.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
орс	dst	2	4	B0	R
			4	B1	IR

Examples: Given: Register 00H = 4FH, register 01H = 02H, and register 02H = 5EH:

CLR	00H	\rightarrow	Register 00H = 00H
CLR	@01H	\rightarrow	Register 01H = 02H, register 02H = 00H

In Register (R) addressing mode, the statement "CLR 00H" clears the destination register 00H value to 00H. In the second example, the statement "CLR @01H" uses Indirect Register (IR) addressing mode to clear the 02H register value to 00H.

6.8.7 COM — Complement

COM dst

Operation: dst \leftarrow NOT dst

The contents of the destination location are complemented (one's complement); all "1s" are changed to "0s", and vice-versa.

Flags: C: Unaffected.

- **Z:** Set if the result is 0; cleared otherwise.
- **S:** Set if the result bit 7 is set; cleared otherwise.
- V: Always reset to 0.

Format:

		Byte	es Cycle	es Opcode (Hex)	e Addr Mode <u>dst</u>
орс	dst	2	4	60	R
			4	61	IR

Examples:	Given: R1 = 07H and register 07H = 0F1H:
-----------	--

COM	R1	\rightarrow	R1 = 0F8H
СОМ	@R1	\rightarrow	R1 = 07H, register 07H = 0EH

In the first example, destination working register R1 contains the value 07H (00000111B). The statement "COM R1" complements all the bits in R1: all logic ones are changed to logic zeros, and vice-versa, leaving the value 0F8H (11111000B).

In the second example, Indirect Register (IR) addressing mode is used to complement the value of destination register 07H (11110001B), leaving the new value 0EH (00001110B).

6.8.8 CP — Compare

CP dst,src

Operation: dst – src

The source operand is compared to (subtracted from) the destination operand, and the appropriate flags are set accordingly. The contents of both operands are unaffected by the comparison.

Flags: C: Set if a "borrow" occurred (src > dst); cleared otherwise.

- **Z:** Set if the result is 0; cleared otherwise.
- **S:** Set if the result is negative; cleared otherwise.
- V: Set if arithmetic overflow occurred, that is, if the operands were of opposite signs and the sign of the result is of the same as the sign of the source operand; cleared otherwise.

Format:

<u>src</u>
r
lr
R
IR
IM
F

Examples:

1. Given: R1 = 02H and R2 = 03H:

 $CP \qquad R1,R2 \qquad \rightarrow Set the C and S flags$

Destination working register R1 contains the value 02H and source register R2 contains the value 03H. The statement "CP R1,R2" subtracts the R2 value (source/subtrahend) from the R1 value (destination/minuend). Because a "borrow" occurs and the difference is negative, C and S are 1.

2. Given: R1 = 05H and R2 = 0AH:

	CP	R1,R2
	JP	UGE,SKIP
	INC	R1
SKIP	LD	R3,R1

In this example, destination working register R1 contains the value 05H which is less than the contents of the source working register R2 (0AH). The statement "CP R1,R2" generates C = 1 and the JP instruction does not jump to the SKIP location. After the statement "LD R3,R1" executes, the value 06H remains in working register R3.

6.8.9 DEC — Decrement

DEC	dst
Operation:	dst ← dst – 1

Flags:

The contents of the destination operand are decremented by one.

: C:Unaffected.

- **Z:** Set if the result is 0; cleared otherwise.
- **S:** Set if result is negative; cleared otherwise.
- V: Set if arithmetic overflow occurred, that is, dst value is -128 (80H) and result value is +127 (7FH); cleared otherwise.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
орс	dst	2	4	00	R
			4	01	IR

Examples:	Given: R1 = 03H and register 03H = 10H:				
	DEC	R1	\rightarrow	R1 = 02H	
	DEC	@R1	\rightarrow	Register 03H = 0FH	

In the first example, if working register R1 contains the value 03H, the statement "DEC R1" decrements the hexadecimal value by one, leaving the value 02H. In the second example, the statement "DEC @R1" decrements the value 10H contained in the destination register 03H by one, leaving the value 0FH.

6.8.10 DI — Disable Interrupts

DI					
Operation:	SYM (3) ← 0				
	Bit zero of the system mode register, SYM.3, is processing. Interrupt requests will continue to see CPU will not service them while interrupt processing.	et their res	spective inte	•	ne
Flags:	No flags are affected.				
Format:					
		Bytes	Cycles	Opcode (Hex)	
	орс	1	4	8F	
Example:	Given: SYM = 08H: DI				

If the value of the SYM register is 08H, the statement "DI" leaves the new value 00H in the register and clears SYM.3 to 0, disabling interrupt processing.

6.8.11 EI — Enable Interrupts

EI **Operation:** SYM (3) $\leftarrow 1$ An El instruction sets bit 2 of the system mode register, SYM.3 to 1. This allows interrupts to be serviced as they occur. If an interrupt's pending bit was set while interrupt processing was disabled (by executing a DI instruction), it will be serviced when you execute the EI instruction. Flags: No flags are affected. Format: Opcode Bytes Cycles (Hex) 9F 1 4 opc Example: Given: SYM = 00H: ΕI

If the SYM register contains the value 00H, that is, if interrupts are currently disabled, the statement "EI" sets the SYM register to 08H, enabling all interrupts. (SYM.3 is the enable bit for global interrupt processing.)

6.8.12 IDLE — Idle Operation

IDLE

Operation:

The IDLE instruction stops the CPU clock while allowing system clock oscillation to continue. Idle Mode can be released by an interrupt request (IRQ) or an external reset operation.

Flags: No flags are affected.

Format:

	By	tes Cycl	les Opcod	e Ado	dr Mode
			(Hex)	<u>dst</u>	<u>src</u>
орс	,	1 4	6F	_	_

Example:	The instruction		
	IDLE		
	NOP		
	NOP		
	NOP		

stops the CPU clock but not the system clock.

6.8.13 INC — Increment

INC dst

Operation: dst \leftarrow dst + 1

The contents of the destination operand are incremented by one.

Flags: C: Unaffected.

- **Z:** Set if the result is 0; cleared otherwise.
- **S:** Set if the result is negative; cleared otherwise.
- V: Set if arithmetic overflow occurred, that is dst value is +127 (7FH) and result is –128 (80H); cleared otherwise.

Format:

			Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
ds	st opc		1	4	rE	r
					r=0 to F	
	орс	dst	2	4	20	R
				4	21	IR

Examples: Given: R0 = 1BH, register 00H = 0CH, and register 1BH = 0FH:

INC	R0	\rightarrow	R0 = 1CH
INC	00H	\rightarrow	Register 00H = 0DH
INC	@R0	\rightarrow	R0 = 1BH, register 01H = 10H

In the first example, if destination working register R0 contains the value 1BH, the statement "INC R0" leaves the value 1CH in that same register.

The next example shows the effect an INC instruction has on register 00H, assuming that it contains the value 0CH.

In the third example, INC is used in Indirect Register (IR) addressing mode to increment the value of register 1BH from 0FH to 10H.

6.8.14 IRET — Interrupt Return

IRET <u>IRET</u>

- Operation: FLAGS ← @SP

This instruction is used at the end of an interrupt service routine. It restores the flag register and the program counter. It also reenables global interrupts.

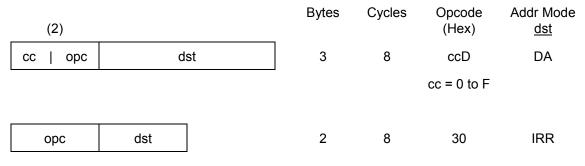
Flags: All flags are restored to their original settings (that is, the settings before the interrupt occurred).

Format:

IRET (Normal)	Bytes	Cycles	Opcode (Hex)
орс	1	10	BF
		12	

6.8.15 JP — Jump

JP cc,dst (Conditional)


JP dst (Unconditional)

Operation: If cc is true, PC \leftarrow dst

The conditional JUMP instruction transfers program control to the destination address if the condition specified by the condition code (cc) is true; otherwise, the instruction following the JP instruction is executed. The unconditional JP simply replaces the contents of the PC with the contents of the specified register pair. Control then passes to the statement addressed by the PC.

Flags: No flags are affected.

Format: ⁽¹⁾

NOTES:

1. The 3-byte format is used for a conditional jump and the 2-byte format for an unconditional jump.

2. In the first byte of the three-byte instruction format (conditional jump), the condition code and the op code are both four bits.

Examples: Given: The carry flag (C) = 1, register 00 = 01H, and register 01 = 20H:

JP	C,LABEL_W	\rightarrow LABEL_W = 1000H, PC = 1000H
JP	@00H	→ PC = 0120H

The first example shows a conditional JP. Assuming that the carry flag is set to 1, the statement "JP C,LABEL_W" replaces the contents of the PC with the value 1000H and transfers control to that location. Had the carry flag not been set, control would then have passed to the statement immediately following the JP instruction.

The second example shows an unconditional JP. The statement "JP @00" replaces the contents of the PC with the contents of the register pair 00H and 01H, leaving the value 0120H.

6.8.16 JR — Jump Relative

JR cc,dst

Operation: If cc is true, PC \leftarrow PC + dst

If the condition specified by the condition code (cc) is true, the relative address is added to the program counter and control passes to the statement whose address is now in the program counter; otherwise, the instruction following the JR instruction is executed (See list of condition codes).

The range of the relative address is +127, -128, and the original value of the program counter is taken to be the address of the first instruction byte following the JR statement.

Flags: No flags are affected.

Format:

(r	note)			Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
сс	opc	dst]	2	6	ccB	RA
			-			cc = 0 to F	

- **NOTE**: In the first byte of the two-byte instruction format, the condition code and the op code are each four bits.
- **Example:** Given: The carry flag = 1 and LABEL_X = 1FF7H:

JR C,LABEL_X \rightarrow PC = 1FF7H

If the carry flag is set (that is, if the condition code is true), the statement "JR C,LABEL_X" will pass control to the statement whose address is now in the PC. Otherwise, the program instruction following the JR would be executed.

6.8.17 LD — Load

LD dst,src

Operation: dst \leftarrow src

The contents of the source are loaded into the destination. The source's contents are unaffected.

Flags: No flags are affected.

Format:

			Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
dst opc	SrC		2	4	rC	r	IM
				4	r8	r	R
src opc	dst		2	4	r9	R	r
					r = 0 to F		
орс	dst src		2	4	C7	r	lr
				4	D7	lr	r
орс	src	dst	3	6	E4	R	R
				6	E5	R	IR
орс	dst	src	3	6	E6	R	IM
			1	6	D6	IR	IM
орс	src	dst	3	6	F5	IR	R
r	r		1				
орс	dst src	х	3	6	87	r	x [r]
	l		1				
орс	src dst	Х	3	6	97	x [r]	r

6.8.18 LD — Load

LD (Continued)

Examples:

es: Given: R0 = 01H, R1 = 0AH, register 00H = 01H, register 01H = 20H, register 02H = 02H, LOOP = 30H, and register 3AH = 0FFH:

LD	R0,#10H	\rightarrow	R0 = 10H
LD	R0,01H	\rightarrow	R0 = 20H, register 01H = 20H
LD	01H,R0	\rightarrow	Register 01H = 01H, R0 = 01H
LD	R1,@R0	\rightarrow	R1 = 20H, R0 = 01H
LD	@R0,R1	\rightarrow	R0 = 01H, R1 = 0AH, register 01H = 0AH
LD	00H,01H	\rightarrow	Register 00H = 20H, register 01H = 20H
LD	02H,@00H	\rightarrow	Register 02H = 20H, register 00H = 01H
LD	00H,#0AH	\rightarrow	Register 00H = 0AH
LD	@00H,#10H	\rightarrow	Register 00H = 01H, register 01H = 10H
LD	@00H,02H	\rightarrow	Register 00H = 01H, register 01H = 02, register 02H = 02H
LD	R0,#LOOP[R1]	\rightarrow	R0 = 0FFH, R1 = 0AH
LD	#LOOP[R0],R1	\rightarrow	Register 31H = 0AH, R0 = 01H, R1 = 0AH

6.8.19 LDC/LDE — Load Memory

LDC/LDE dst,src

Operation: dst \leftarrow src

This instruction loads a byte from program or data memory into a working register or vice-versa. The source values are unaffected. LDC refers to program memory and LDE to data memory. The assembler makes "Irr" or "rr" values an even number for program memory and odd an odd number for data memory.

Flags: No flags are affected.

Format:

					Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
1.	орс	dst src			2	10	C3	r	Irr
2.	орс	src dst			2	10	D3	Irr	r
3.	орс	dst src	XS		3	12	E7	r	XS [rr]
4.	орс	src dst	XS		3	12	F7	XS [rr]	r
5.	орс	dst src	XLL	XL _H	4	14	Α7	r	XL [rr]
6.	орс	src dst	XLL	XL _H	4	14	B7	XL [rr]	r
7.	орс	dst 0000	DA _L	DA _H	4	14	A7	r	DA
8.	орс	src 0000	DA _L	DA _H	4	14	В7	DA	r
9.	орс	dst 0001	DA _L	DA _H	4	14	A7	r	DA

10. opc src DA _L DA _H	4	14	B7	DA	r
---	---	----	----	----	---

NOTES:

- 1. The source (src) or working register pair [rr] for formats 5 and 6 cannot use register pair 0–1.
- 2. For formats 3 and 4, the destination address "XS [rr]" and the source address "XS [rr]" are each one byte.
- 3. For formats 5 and 6, the destination address "XL [rr]" and the source address "XL [rr]" are each two bytes.
- 4. The DA and r source values for formats 7 and 8 are used to address program memory; the second set of values, used in formats 9 and 10, are used to address data memory.

6.8.20 LDC/LDE — Load Memory

LDC/LDE (Continued)

	(
Examples:	locations	0061 = AAH, 0103H	+ =	2 = 01H, R3 = 04H, R4 = 00H, R5 = 60H; Program memory 4FH, 0104H = 1A, 0105H = 6DH, and 1104H = 88H. External data 1, 0103H = 5FH, 0104H = 2AH, 0105H = 7DH, and 1104H = 98H:
	LDC	R0,@RR2	;	R0 \leftarrow contents of program memory location 0104H R0 = 1AH, R2 = 01H, R3 = 04H
	LDE	R0,@RR2	, , ,	R0 \leftarrow contents of external data memory location 0104H R0 = 2AH, R2 = 01H, R3 = 04H
	LDC ^(note)	@RR2,R0	-, -, ,	11H (contents of R0) is loaded into program memory location 0104H (RR2), working registers R0, R2, R3 \rightarrow no change
	LDE	@RR2,R0	, , ,	11H (contents of R0) is loaded into external data memory location 0104H (RR2), working registers R0, R2, R3 \rightarrow no change
	LDC	R0,#01H[RR4]	, , ,	R0 \leftarrow contents of program memory location 0061H (01H + RR4), R0 = AAH, R2 = 00H, R3 = 60H
	LDE	R0,#01H[RR4]	, , ,	$R0 \leftarrow$ contents of external data memory location 0061H (01H + RR4), R0 = BBH, R4 = 00H, R5 = 60H
	LDC ^(note) memory lo		#(01H[RR4],R0 ; 11H (contents of R0) is loaded into program
			;	0061H (01H + 0060H)
	LDE	#01H[RR4],R0	, ,	11H (contents of R0) is loaded into external data memory location 0061H (01H + 0060H)
	LDC	R0,#1000H[RR2]	, , ,	$R0 \leftarrow$ contents of program memory location 1104H (1000H + 0104H), R0 = 88H, R2 = 01H, R3 = 04H
	LDE	R0,#1000H[RR2]	, , ,	$R0 \leftarrow$ contents of external data memory location 1104H (1000H + 0104H), R0 = 98H, R2 = 01H, R3 = 04H
	LDC	R0,1104H	;	$R0 \leftarrow contents of program memory location 1104H, R0 = 88H$
	LDE	R0,1104H	;	R0 \leftarrow contents of external data memory location 1104H, R0 = 98H
	LDC ^(note)	1105H,R0	;	11H (contents of R0) is loaded into program memory location 1105H, (1105H) \leftarrow 11H
	LDE	1105H,R0	, , ,	11H (contents of R0) is loaded into external data memory location 1105H, (1105H) \leftarrow 11H

NOTE: These instructions are not supported by masked ROM type devices.

6.8.21 LDCD/LDED — Load Memory and Decrement

LDCD/LDED dst,src

- **Operation:** dst \leftarrow src
 - $rr \leftarrow rr 1$

These instructions are used for user stacks or block transfers of data from program or data memory to the register file. The address of the memory location is specified by a working register pair. The contents of the source location are loaded into the destination location. The memory address is then decremented. The contents of the source are unaffected.

LDCD references program memory and LDED references external data memory. The assembler makes "Irr" an even number for program memory and an odd number for data memory.

Flags: No flags are affected.

Format:

		Bytes	Cycles	Opcode	Addr Mode		
				(Hex)	<u>dst</u>	<u>src</u>	
орс	dst src	2	10	E2	r	Irr	

Examples: Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory location 1033H = 0CDH, and external data memory location 1033H = 0DDH:

LDCD	R8,@RR6	 ; 0CDH (contents of program memory location 1033H) is loaded ; into R8 and RR6 is decremented by one ; R8 = 0CDH, R6 = 10H, R7 = 32H (RR6 ← RR6 - 1)
LDED	R8,@RR6	 ; 0DDH (contents of data memory location 1033H) is loaded ; into R8 and RR6 is decremented by one (RR6 ← RR6 – 1) ; R8 = 0DDH, R6 = 10H, R7 = 32H

6.8.22 LDCI/LDEI — Load Memory and Increment

LDCI/LDEI dst,src

Operation: dst \leftarrow src

 $rr \leftarrow rr + 1$

These instructions are used for user stacks or block transfers of data from program or data memory to the register file. The address of the memory location is specified by a working register pair. The contents of the source location are loaded into the destination location. The memory address is then incremented automatically. The contents of the source are unaffected.

LDCI refers to program memory and LDEI refers to external data memory. The assembler makes "Irr" even for program memory and odd for data memory.

Flags: No flags are affected.

Format:

		Bytes	Cycles	Opcode	Addr Mode	
				(Hex)	<u>dst</u>	<u>src</u>
орс	dst src	2	10	E3	r	Irr

Examples: Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory locations 1033H = 0CDH and 1034H = 0C5H; external data memory locations 1033H = 0DDH and 1034H = 0D5H:

LDCI	R8,@RR6	; 0CDH (contents of program memory location 1033H) is loaded ; into R8 and RR6 is incremented by one (RR6 \leftarrow RR6 + 1) ; R8 = 0CDH, R6 = 10H, R7 = 34H
LDEI	R8,@RR6	 ; 0DDH (contents of data memory location 1033H) is loaded ; into R8 and RR6 is incremented by one (RR6 ← RR6 + 1) ; R8 = 0DDH, R6 = 10H, R7 = 34H

6.8.23 NOP — No Operation

- **Operation:** No action is performed when the CPU executes this instruction. Typically, one or more NOPs are executed in sequence in order to effect a timing delay of variable duration.
- Flags: No flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)
орс	1	4	FF

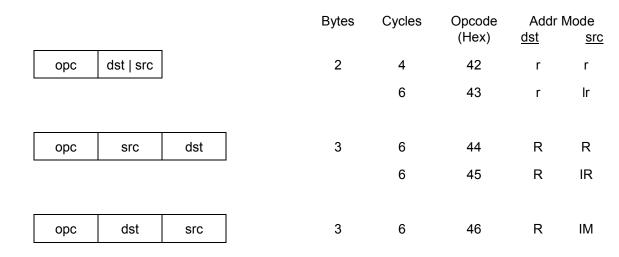
Example: When the instruction

NOP

is encountered in a program, no operation occurs. Instead, there is a delay in instruction execution time.

6.8.24 OR — Logical OR

OR dst,src


Operation: dst \leftarrow dst OR src

The source operand is logically ORed with the destination operand and the result is stored in the destination. The contents of the source are unaffected. The OR operation results in a 1 being stored whenever either of the corresponding bits in the two operands is a 1; otherwise a 0 is stored.

Flags: C: Unaffected.

- **Z:** Set if the result is 0; cleared otherwise.
- **S:** Set if the result bit 7 is set; cleared otherwise.
- V: Always cleared to 0.

Format:

Examples: Given: R0 = 15H, R1 = 2AH, R2 = 01H, register 00H = 08H, register 01H = 37H, and register 08H = 8AH:

OR	R0,R1	\rightarrow	R0 = 3FH, R1 = 2AH
OR	R0,@R2	\rightarrow	R0 = 37H, R2 = 01H, register 01H = 37H
OR	00H,01H	\rightarrow	Register 00H = 3FH, register 01H = 37H
OR	01H,@00H	\rightarrow	Register 00H = 08H, register 01H = 0BFH
OR	00H,#02H	\rightarrow	Register 00H = 0AH

In the first example, if working register R0 contains the value 15H and register R1 the value 2AH, the statement "OR R0,R1" logical-ORs the R0 and R1 register contents and stores the result (3FH) in destination register R0.

The other examples show the use of the logical OR instruction with the various addressing modes and formats.

6.8.25 POP — Pop From Stack

POP	dst
Operation:	dst ← @SP
	$SP \leftarrow SP + 1$

The contents of the location addressed by the stack pointer are loaded into the destination. The stack pointer is then incremented by one.

Flags: No flags affected.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
орс	dst	2	8	50	R
			8	51	IR

Examples: Given: Register 00H = 01H, register 01H = 1BH, SP (0D9H) = 0BBH, and stack register 0BBH = 55H:

POP	00H	\rightarrow	Register 00H = 55H, SP = 0BCH
POP	@00H	\rightarrow	Register 00H = 01H, register 01H = 55H, SP = 0BCH

In the first example, general register 00H contains the value 01H. The statement "POP 00H" loads the contents of location 0BBH (55H) into destination register 00H and then increments the stack pointer by one. Register 00H then contains the value 55H and the SP points to location 0BCH.

6.8.26 PUSH — Push To Stack

PUSH src

Operation: SP \leftarrow SP - 1

@SP ← src

A PUSH instruction decrements the stack pointer value and loads the contents of the source (src) into the location addressed by the decremented stack pointer. The operation then adds the new value to the top of the stack.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
орс	src	2	8	70	R
			8	71	IR

Examples: Given: Register 40H = 4FH, register 4FH = 0AAH, SP = 0C0H:

PUSH	40H	\rightarrow	Register 40H = 4FH, stack register 0BFH = 4FH, SP = 0BFH
PUSH	@40H	\rightarrow	Register 40H = 4FH, register 4FH = 0AAH, stack register 0BFH = 0AAH, SP = 0BFH

In the first example, if the stack pointer contains the value 0C0H, and general register 40H the value 4FH, the statement "PUSH 40H" decrements the stack pointer from 0C0 to 0BFH. It then loads the contents of register 40H into location 0BFH. Register 0BFH then contains the value 4FH and SP points to location 0BFH.

6.8.27 RCF — Reset Carry Flag							
RCF	RCF						
Operation:	$C \leftarrow 0$						
Flags:	The carry flag is cleared to logic zero, regardless of its previous value. C : Cleared to 0.						
	No other flags are affected.						
Format:							
		Bytes	Cycles	Opcode (Hex)			
	орс	1	4	CF			
Example:	Given: C = 1 or 0:						

The instruction RCF clears the carry flag (C) to logic zero.

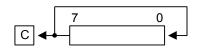
PS031503-0115

6.8.28 RET —	Return							
RET								
Operation:	PC ← @)SP						
	$SP \leftarrow S$	P + 2						
	procedure pointer are	entered by a popped into	a CALL instruct	tion. The co counter. The	ntents of th	location ad	procedure at the dressed by the secuted is the c	stack
Flags:	No flags a	re affected.						
Format:								
					Bytes	Cycles	Opcode (Hex)	
	орс				1	8	AF	
						10		
Example:	Given: SP	= 0BCH, (S	P) = 101AH, ar	nd PC = 123	34:			
	RET	\rightarrow	PC = 101AH,	, SP = 0BEł	4			
	The staten	nent "RET" p	oops the conter	nts of stack	pointer loca	ation 0BCH (1	0H) into the hig	h byte of

I he statement "RET" pops the contents of stack pointer location 0BCH (10H) into the high byte of the program counter. The stack pointer then pops the value in location 0BDH (1AH) into the PC's low byte and the instruction at location 101AH is executed. The stack pointer now points to memory location 0BEH.

6.8.29 RL — Rotate Left

RL


Operation: C \leftarrow dst (7)

dst

dst (0) \leftarrow dst (7)

dst (n + 1) \leftarrow dst (n), n = 0-6

The contents of the destination operand are rotated left one bit position. The initial value of bit 7 is moved to the bit zero (LSB) position and also replaces the carry flag.

Flags:

- **C:** Set if the bit rotated from the most significant bit position (bit 7) was 1.
- **Z:** Set if the result is 0; cleared otherwise.
- **S:** Set if the result bit 7 is set; cleared otherwise.
- V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during rotation; cleared otherwise.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
орс	dst	2	4	90	R
			4	91	IR

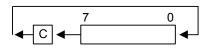
Examples: Given: Register 00H = 0AAH, register 01H = 02H and register 02H = 17H:

RL 00H \rightarrow Register 00H = 55H, C = 1

RL @01H \rightarrow Register 01H = 02H, register 02H = 2EH, C = 0

In the first example, if general register 00H contains the value 0AAH (10101010B), the statement "RL 00H" rotates the 0AAH value left one bit position, leaving the new value 55H (01010101B) and setting the carry and overflow flags.

6.8.30 RLC — Rotate Left Through Carry


RLC dst

Operation: dst (0) \leftarrow C

 $C \leftarrow dst(7)$

dst (n + 1) \leftarrow dst (n), n = 0-6

The contents of the destination operand with the carry flag are rotated left one bit position. The initial value of bit 7 replaces the carry flag (C); the initial value of the carry flag replaces bit zero.

Flags:

- **C:** Set if the bit rotated from the most significant bit position (bit 7) was 1.
- **Z:** Set if the result is 0; cleared otherwise.
- **S:** Set if the result bit 7 is set; cleared otherwise.
- V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during rotation; cleared otherwise.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
орс	dst	2	4	10	R
			4	11	IR

Examples: Given: Register 00H = 0AAH, register 01H = 02H, and register 02H = 17H, C = 0:

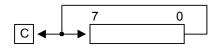
RLC 00H \rightarrow Register 00H = 54H, C = 1

RLC @01H \rightarrow Register 01H = 02H, register 02H = 2EH, C = 0

In the first example, if general register 00H has the value 0AAH (10101010B), the statement "RLC 00H" rotates 0AAH one bit position to the left. The initial value of bit 7 sets the carry flag and the initial value of the C flag replaces bit zero of register 00H, leaving the value 55H (01010101B). The MSB of register 00H resets the carry flag to 1 and sets the overflow flag.

6.8.31 RR — Rotate Right

RR


Operation: C \leftarrow dst (0)

dst

dst (7) \leftarrow dst (0)

dst (n) \leftarrow dst (n + 1), n = 0-6

The contents of the destination operand are rotated right one bit position. The initial value of bit zero (LSB) is moved to bit 7 (MSB) and also replaces the carry flag (C).

Flags:

- **C:** Set if the bit rotated from the least significant bit position (bit zero) was 1.
- **Z:** Set if the result is 0; cleared otherwise.
- **S:** Set if the result bit 7 is set; cleared otherwise.
- V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during rotation; cleared otherwise.

Format:

		В	Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
орс	dst		2	4	E0	R
				4	E1	IR

Examples: Given: Register 00H = 31H, register 01H = 02H, and register 02H = 17H:

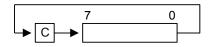
RR 00H \rightarrow Register 00H = 98H, C = 1

RR @01H \rightarrow Register 01H = 02H, register 02H = 8BH, C = 1

In the first example, if general register 00H contains the value 31H (00110001B), the statement "RR 00H" rotates this value one bit position to the right. The initial value of bit zero is moved to bit 7, leaving the new value 98H (10011000B) in the destination register. The initial bit zero also resets the C flag to 1 and the sign flag and overflow flag are also set to 1.

6.8.32 RRC — Rotate Right Through Carry

RRC


Operation: dst (7) \leftarrow C

 $C \leftarrow dst(0)$

dst

dst (n) \leftarrow dst (n + 1), n = 0-6

The contents of the destination operand and the carry flag are rotated right one bit position. The initial value of bit zero (LSB) replaces the carry flag; the initial value of the carry flag replaces bit 7 (MSB).

Flags:

- **C:** Set if the bit rotated from the least significant bit position (bit zero) was 1.
- **Z:** Set if the result is 0 cleared otherwise.
- **S:** Set if the result bit 7 is set; cleared otherwise.
- V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during rotation; cleared otherwise.

Format:

		Byte	s Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
орс	dst	2	4	C0	R
			4	C1	IR

Examples: Given: Register 00H = 55H, register 01H = 02H, register 02H = 17H, and C = 0:

RRC 00H \rightarrow Register 00H = 2AH, C = 1

RRC @01H \rightarrow Register 01H = 02H, register 02H = 0BH, C = 1

In the first example, if general register 00H contains the value 55H (01010101B), the statement "RRC 00H" rotates this value one bit position to the right. The initial value of bit zero (1) replaces the carry flag and the initial value of the C flag (1) replaces bit 7. This leaves the new value 2AH (00101010B) in destination register 00H. The sign flag and overflow flag are both cleared to 0.

6.8.33 SBC — Subtract With Carry

SBC dst,src

Operation: dst \leftarrow dst - src - c

The source operand, along with the current value of the carry flag, is subtracted from the destination operand and the result is stored in the destination. The contents of the source are unaffected. Subtraction is performed by adding the two's-complement of the source operand to the destination operand. In multiple precision arithmetic, this instruction permits the carry ("borrow") from the subtraction of the low-order operands to be subtracted from the subtraction of high-order operands.

Flags:

- **C:** Set if a borrow occurred (src > dst); cleared otherwise.
- **Z**: Set if the result is 0; cleared otherwise.
- **S:** Set if the result is negative; cleared otherwise.
- V: Set if arithmetic overflow occurred, that is, if the operands were of opposite sign and the sign of the result is the same as the sign of the source; cleared otherwise.

Format:

					Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
	орс	dst src			2	4	32	r	r
						6	33	r	lr
Г		1	[1					
	орс	src	dst		3	6	34	R	R
						6	35	R	IR
_									
	орс	dst	SrC		3	6	36	R	IM

Examples: Given: R1 = 10H, R2 = 03H, C = 1, register 01H = 20H, register 02H = 03H, and register 03H = 0AH:

SBC	R1,R2	\rightarrow	R1 = 0CH, R2 = 03H
SBC	R1,@R2	\rightarrow	R1 = 05H, R2 = 03H, register 03H = 0AH
SBC	01H,02H	\rightarrow	Register 01H = 1CH, register 02H = 03H
SBC	01H,@02H	\rightarrow	Register 01H = 15H,register 02H = 03H, register 03H = 0AH
SBC	01H,#8AH	\rightarrow	Register 01H = 95H; C, S, and V = 1

In the first example, if working register R1 contains the value 10H and register R2 the value 03H, the statement "SBC R1,R2" subtracts the source value (03H) and the C flag value (1) from the destination (10H) and then stores the result (0CH) in register R1.

6.8.34 SCF — Set Carry Flag

SCF

Operation: $C \leftarrow 1$

The carry flag (C) is set to logic one, regardless of its previous value.

Flags:

C: Set to 1. No other flags are affected.

Format:

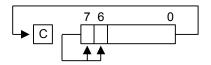
	Bytes	Cycles	Opcode (Hex)
орс	1	4	DF

Example: The statement

SCF

sets the carry flag to logic one.

6.8.35 SRA — Shift Right Arithmetic


SRA dst

Operation: dst (7) \leftarrow dst (7)

 $C \leftarrow dst(0)$

dst (n) \leftarrow dst (n + 1), n = 0-6

An arithmetic shift-right of one bit position is performed on the destination operand. Bit zero (the LSB) replaces the carry flag. The value of bit 7 (the sign bit) is unchanged and is shifted into bit position 6.

Flags:

- C: Set if the bit shifted from the LSB position (bit zero) was 1.
- **Z:** Set if the result is 0; cleared otherwise.
- **S:** Set if the result is negative; cleared otherwise.
- V: Always cleared to 0.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
орс	dst	2	4	D0	R
			4	D1	IR

Examples: Given: Register 00H = 9AH, register 02H = 03H, register 03H = 0BCH, and C = 1:

SRA 00H \rightarrow Register 00H = 0CD, C = 0

SRA @02H \rightarrow Register 02H = 03H, register 03H = 0DEH, C = 0

In the first example, if general register 00H contains the value 9AH (10011010B), the statement "SRA 00H" shifts the bit values in register 00H right one bit position. Bit zero (0) clears the C flag and bit 7 (1) is then shifted into the bit 6 position (bit 7 remains unchanged). This leaves the value 0CDH (11001101B) in destination register 00H.

6.8.36 STOP — Stop Operation

STOP

Operation: The STOP instruction stops the both the CPU clock and system clock and causes the microcontroller to enter Stop Mode. During Stop Mode, the contents of on-chip CPU registers, peripheral registers, and I/O port control and data registers are retained. Stop Mode can be released by an external reset operation or External interrupt input. For the reset operation, the RESET pin must be held to Low level until the required oscillation stabilization interval has elapsed.

Flags: No flags are affected.

Format:

	Bytes	Cycles	Opcode	Addr	Mode
			(Hex)	<u>dst</u>	<u>src</u>
орс	1	4	7F	_	_

Example: The statement LD STOPCON, #0A5H STOP NOP NOP

NOP

halts all microcontroller operations. When the STOPCON Register is not #0A5H value, if you use STOP instruction, PC is changed to reset address.

6.8.37 SUB — Subtract

SUB dst,src

Operation: dst \leftarrow dst - src

The source operand is subtracted from the destination operand and the result is stored in the destination. The contents of the source are unaffected. Subtraction is performed by adding the two's complement of the source operand to the destination operand.

Flags:

- **C:** Set if a "borrow" occurred; cleared otherwise.
- **Z:** Set if the result is 0; cleared otherwise.
- **S:** Set if the result is negative; cleared otherwise.
- V: Set if arithmetic overflow occurred, that is, if the operands were of opposite signs and the sign of the result is of the same as the sign of the source operand; cleared otherwise.

			Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
орс	dst src		2	4	22	r	r
				6	23	r	lr
орс	src	dst	3	6	24	R	R
				6	25	R	IR
орс	dst	src	3	6	26	R	IM

Format:

Examples: Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:

SUB	R1,R2	\rightarrow	R1 = 0FH, R2 = 03H
SUB	R1,@R2	\rightarrow	R1 = 08H, R2 = 03H
SUB	01H,02H	\rightarrow	Register 01H = 1EH, register 02H = 03H
SUB	01H,@02H	\rightarrow	Register 01H = 17H, register 02H = 03H
SUB	01H,#90H	\rightarrow	Register 01H = 91H; C, S, and V = 1
SUB	01H,#65H	\rightarrow	Register 01H = 0BCH; C and S = 1, V = 0

In the first example, if working register R1 contains the value 12H and if register R2 contains the value 03H, the statement "SUB R1,R2" subtracts the source value (03H) from the destination value (12H) and stores the result (0FH) in destination register R1.

6.8.38 TCM — Test Complement Under Mask

TCM dst,src

Operation: (NOT dst) AND src

This instruction tests selected bits in the destination operand for a logic one value. The bits to be tested are specified by setting a 1 bit in the corresponding position of the source operand (mask). The TCM statement complements the destination operand, which is then ANDed with the source mask. The zero (Z) flag can then be checked to determine the result. The destination and source operands are unaffected.

Flags:

- C: Unaffected.
- **Z:** Set if the result is 0; cleared otherwise.
- S: Set if the result bit 7 is set; cleared otherwise.
- V: Always cleared to 0.

Format:

				Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
орс	dst src			2	4	62	r	r
					6	63	r	lr
орс	src	dst		3	6	64	R	R
					6	65	R	IR
			_					
орс	dst	src]	3	6	66	R	IM

Examples: Given: R0 = 0C7H, R1 = 02H, R2 = 12H, register 00H = 2BH, register 01H = 02H, and register 02H = 23H:

ТСМ	R0,R1	\rightarrow	R0 = 0C7H, R1 = 02H, Z = 1
ТСМ	R0,@R1	\rightarrow	R0 = 0C7H, R1 = 02H, register 02H = 23H, Z = 0
ТСМ	00H,01H	\rightarrow	Register 00H = 2BH, register 01H = 02H, Z = 1
ТСМ	00H,@01H	\rightarrow	Register 00H = 2BH, register 01H = 02H, register 02H = 23H, Z = 1
ТСМ	00H,#34	\rightarrow	Register 00H = 2BH, Z = 0

In the first example, if working register R0 contains the value 0C7H (11000111B) and register R1 the value 02H (00000010B), the statement "TCM R0,R1" tests bit one in the destination register for a 1 value. Because the mask value corresponds to the test bit, the Z flag is set to logic one and can be tested to determine the result of the TCM operation.

6.8.39 TM — Test Under Mask

TM dst,src

Operation: dst AND src

This instruction tests selected bits in the destination operand for a logic zero value. The bits to be tested are specified by setting a 1 bit in the corresponding position of the source operand (mask), which is ANDed with the destination operand. The zero (Z) flag can then be checked to determine the result. The destination and source operands are unaffected.

Flags:

- C: Unaffected.
- **Z:** Set if the result is 0; cleared otherwise.
- **S:** Set if the result bit 7 is set; cleared otherwise.
- V: Always reset to 0.

Format:

				Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
орс	dst src			2	4	72	r	r
					6	73	r	lr
орс	src	dst		3	6	74	R	R
					6	75	R	IR
_			_					
орс	dst	src		3	6	76	R	IM

Examples: Given: R0 = 0C7H, R1 = 02H, R2 = 18H, register 00H = 2BH, register 01H = 02H, and register 02H = 23H:

ТМ	R0,R1	\rightarrow	R0 = 0C7H, R1 = 02H, Z = 0
ТМ	R0,@R1	\rightarrow	R0 = 0C7H, R1 = 02H, register 02H = 23H, Z = 0
ТМ	00H,01H	\rightarrow	Register 00H = 2BH, register 01H = 02H, Z = 0
ТМ	00H,@01H	\rightarrow	Register 00H = 2BH, register 01H = 02H, register 02H = 23H, Z = 0
ТМ	00H,#54H	\rightarrow	Register 00H = 2BH, Z = 1

In the first example, if working register R0 contains the value 0C7H (11000111B) and register R1 the value 02H (00000010B), the statement "TM R0,R1" tests bit one in the destination register for a 0 value. Because the mask value does not match the test bit, the Z flag is cleared to logic zero and can be tested to determine the result of the TM operation.

PS031503-0115

6.8.40 XOR — Logical Exclusive OR

XOR dst,src

Operation: dst \leftarrow dst XOR src

The source operand is logically exclusive-ORed with the destination operand and the result is stored in the destination. The exclusive-OR operation results in a 1 bit being stored whenever the corresponding bits in the operands are different; otherwise, a 0 bit is stored.

Flags:

- C: Unaffected.
- **Z:** Set if the result is 0; cleared otherwise.
- **S:** Set if the result bit 7 is set; cleared otherwise.
- V: Always reset to 0.

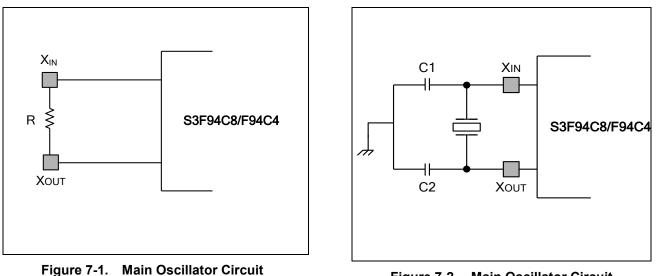
Format:

			Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
орс	dst src		2	4	B2	r	r
				6	B3	r	lr
орс	src	dst	3	6	B4	R	R
				6	B5	R	IR
орс	dst	SrC	3	6	B6	R	IM

Examples: Given: R0 = 0C7H, R1 = 02H, R2 = 18H, register 00H = 2BH, register 01H = 02H, and register 02H = 23H:

XOR	R0,R1	\rightarrow	R0 = 0C5H, R1 = 02H
XOR	R0,@R1	\rightarrow	R0 = 0E4H, R1 = 02H, register 02H = 23H
XOR	00H,01H	\rightarrow	Register 00H = 29H, register 01H = 02H
XOR	00H,@01H	\rightarrow	Register 00H = 08H, register 01H = 02H, register 02H = 23H
XOR	00H,#54H	\rightarrow	Register 00H = 7FH

In the first example, if working register R0 contains the value 0C7H and if register R1 contains the value 02H, the statement "XOR R0,R1" logically exclusive-ORs the R1 value with the R0 value and stores the result (0C5H) in the destination register R0.



7.1 Overview

By using the Smart Option (3FH.1 – .0 in ROM), users can select an internal RC oscillator, an external RC oscillator, or an external oscillator. In using internal oscillator, XIN (P1.0), XOUT (P1.1) can be used by normal I/O pins. An internal RC oscillator source provides a typical 3.2 MHz or 0.5 MHz (in VDD = 5 V) depending on Smart Option.

An external RC oscillation source provides a typical 4MHz clock for S3F94C8/S3F94C4. An internal capacitor supports the RC oscillator circuit. An external crystal or ceramic oscillation source provides a maximum 10 MHz clock. The XIN and XOUT pins connect the oscillation source to the on-chip clock circuit. Simplified external RC oscillator and crystal/ceramic oscillator circuits are shown in Figures 7-1 and 7-2. When you use external oscillator, P1.0, P1.1 must be set to output port to prevent current consumption.

7.2 Main Oscillator Logic

To increase processing speed and to reduce clock noise, non-divided logic is implemented for the main oscillator circuit. For this reason, very high-resolution waveforms (square signal edges) must be generated in order for the CPU to efficiently process logic operations.

7.2.1 Clock Status During Power-Down Modes

The two power-down modes, Stop Mode and Idle Mode, affect clock oscillation as follows:

In Stop Mode, the main oscillator "freezes", halting the CPU and peripherals. The contents of the register file and current system register values are retained. Stop Mode is released, and the oscillator started, by a reset operation or by an external interrupt with RC-delay noise filter (for S3F94C8/S3F94C4, INT0–INT1).

In Idle Mode, the internal clock signal is gated off to the CPU, but not to interrupt control and the timer. The current CPU status is preserved, including stack pointer, program counter, and flags. Data in the register file is retained. Idle Mode is released by a reset or by an interrupt (external or internally-generated).

7.2.2 System Clock Control Register

The System Clock Control Register, CLKCON, is located in location D4H. It is read/write addressable and has the following functions:

Oscillator IRQ wake-up function enable/disable (CLKCON.7) Oscillator frequency divide-by value: non-divided, 2, 8, or 16 (CLKCON.4 and CLKCON.3)

The CLKCON Register controls whether or not an external interrupt can be used to trigger a Stop Mode Release (This is called the "IRQ wake-up" function). The IRQ wake-up enable bit is CLKCON.7.

After a reset, the external interrupt oscillator wake-up function is enabled, and the $f_{OSC}/16$ (the slowest clock speed) is selected as the CPU clock. If necessary, you can then increase the CPU clock speed to f_{OSC} , $f_{OSC}/2$ or $f_{OSC}/8$.

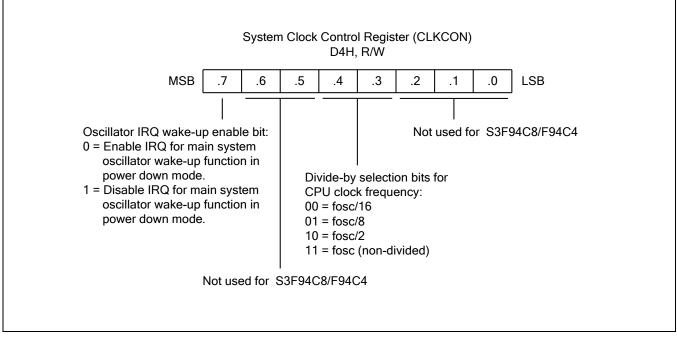


Figure 7-3. System Clock Control Register (CLKCON)

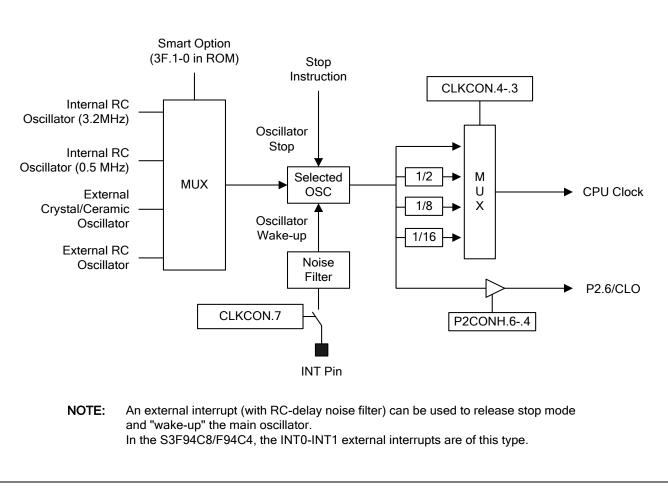


Figure 7-4. System Clock Circuit Diagram

8 RESET and Power-Down

8.1 System Reset

By Smart Option (3EH.7 in ROM), user can select internal RESET (LVR) or external RESET. In using internal RESET (LVR), nRESET pin (P1.2) can be used by normal I/O pin.

The S3F94C8/S3F94C4 can be RESET in four ways:

By external power-on-reset

By the external nRESET input pin pulled low

By the digital watchdog peripheral timing out

By by Low Voltage Reset (LVR)

During a external power-on reset, the voltage at V_{DD} is High level and the nRESET pin is forced to Low level. The nRESET signal is input through a Schmitt trigger circuit where it is then synchronized with the CPU clock. This brings the S3F94C8/S3F94C4 into a known operating status. To ensure correct start-up, the user should take care that nRESET signal is not released before the V_{DD} level is sufficient to allow MCU operation at the chosen frequency.

The nRESET pin must be held to Low level for a minimum time interval after the power supply comes within tolerance in order to allow time for internal CPU clock oscillation to stabilize. The minimum required oscillation stabilization time for a reset is approximately 52.4 ms (@ $2^{19}/f_{OSC}$, $f_{OSC} = 10$ MHz).

When a reset occurs during normal operation (with both V_{DD} and nRESET at High level), the signal at the nRESET pin is forced Low and the Reset operation starts. All system and peripheral control registers are then set to their default hardware Reset values (see Table 8-1).

The MCU provides a watchdog timer function in order to ensure graceful recovery from software malfunction. If watchdog timer is not refreshed before an end-of-counter condition (overflow) is reached, the internal reset will be activated.

The on-chip Low Voltage Reset, features static Reset when supply voltage is below a reference value (Typ. 1.9, 2.3, 3.0, 3.6, 3.9 V). Thanks to this feature, external reset circuit can be removed while keeping the application safety. As long as the supply voltage is below the reference value, there is a internal and static RESET. The MCU can start only when the supply voltage rises over the reference value.

When you calculate power consumption, please remember that a static current of LVR circuit should be added a CPU operating current in any operating modes such as Stop, Idle, and normal RUN mode when LVR enable in Smart Option.

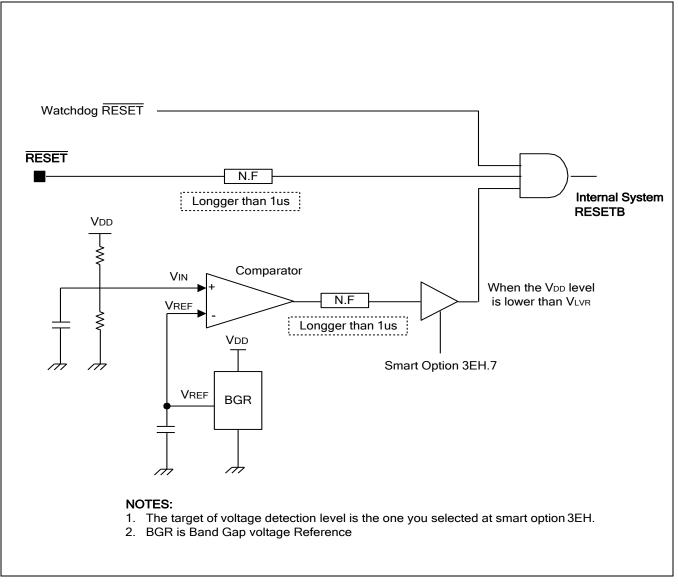


Figure 8-1. Low Voltage Reset Circuit

NOTE

To program the duration of the oscillation stabilization interval, you must make the appropriate settings to the Basic Timer Control Register, BTCON, before entering Stop Mode. Additionally, if you do not want to use the basic timer watchdog function (which causes a system reset if a basic timer counter overflow occurs), you can disable it by writing "1010B" to the upper nibble of BTCON.

8.1.1 External RESET pin

When the nRESET pin transiting from V_{IL} (low input level of reset pin) to V_{IH} (high input level of reset pin), the reset pulse is generated.

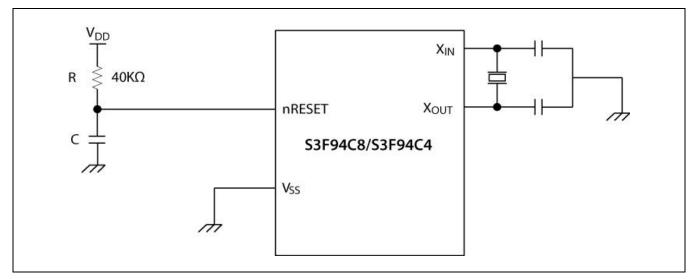


Figure 8-2. Recommended External RESET Circuit

NOTE

In Figure 8-2, to ensure that the voltage drop across Resistor R does not violate reset pulse detection, Zilog recommends that the resistance value of R be less than 40K Ω .

8.1.2 MCU Initialization Sequence

The following sequence of events occurs during a Reset operation:

All interrupts are disabled.

The watchdog function (basic timer) is enabled.

Ports 0-2 are set to input mode

Peripheral control and data registers are disabled and reset to their initial values (see Table 8-1).

The program counter is loaded with the ROM reset address, 0100H.

When the programmed oscillation stabilization time interval has elapsed, the address stored in ROM location 0100H (and 0101H) is fetched and executed.

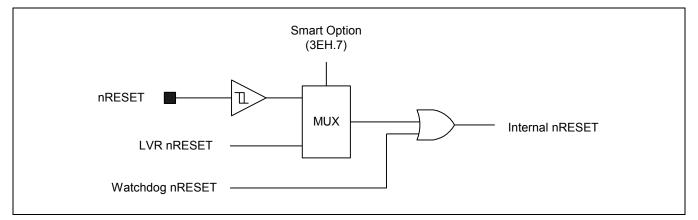


Figure 8-3. Reset Block Diagram

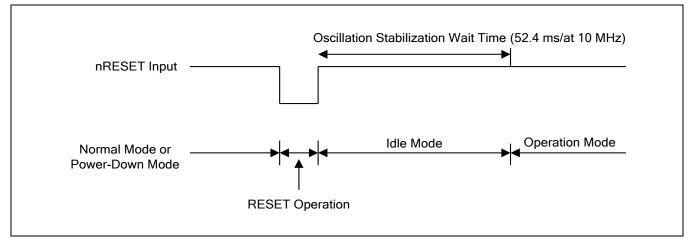


Figure 8-4. Timing for S3F94C8/S3F94C4 After RESET

8.2 Power-Down Modes

8.2.1 Stop Mode

Stop Mode is invoked by the instruction STOP (opcode 7FH). In Stop Mode, the operation of the CPU and all peripherals is halted. That is, the on-chip main oscillator stops and the supply current is reduced to less than 4μ A except that the LVR(Low Voltage Reset) is enable. All system functions are halted when the clock "freezes", but data stored in the internal register file is retained. Stop Mode can be released in one of two ways: by a nRESET signal or by an external interrupt.

NOTE

Before executing the STOP instruction, set the STOPCON Register as "10100101b".

8.2.2 Using RESET to Release Stop Mode

Stop Mode is released when the nRESET signal is released and returns to High level. All system and peripheral control registers are then Reset to their default values and the contents of all data registers are retained. A Reset operation automatically selects a slow clock ($f_{OSC}/16$) because CLKCON.3 and CLKCON.4 are cleared to "00B". After the oscillation stabilization interval has elapsed, the CPU executes the system initialization routine by fetching the 16-bit address stored in ROM locations 0100H and 0101H.

8.2.3 Using an External Interrupt to Release Stop Mode

External interrupts with an RC-delay noise filter circuit can be used to release Stop Mode (Clock-related external interrupts cannot be used). External interrupts INT0-INT1 in the S3F94C8/S3F94C4 interrupt structure meet this criterion.

Note that when Stop Mode is released by an external interrupt, the current values in system and peripheral control registers are not changed. When you use an interrupt to release Stop Mode, the CLKCON.3 and CLKCON.4 register values remain unchanged, and the currently selected clock value is used. If you use an external interrupt for Stop Mode Release, you can also program the duration of the oscillation stabilization interval. To do this, you must put the appropriate value to BTCON register *before* entering Stop Mode.

The external interrupt is serviced when the Stop Mode Release occurs. Following the IRET from the service routine, the instruction immediately following the one that initiated Stop Mode is executed.

8.2.4 Idle Mode

Idle Mode is invoked by the instruction IDLE (opcode 6FH). In Idle Mode, CPU operations are halted while select peripherals remain active. During Idle Mode, the internal clock signal is gated off to the CPU, but not to interrupt logic and timer/counters. Port pins retain the mode (input or output) they had at the time Idle Mode was entered.

There are two ways to release Idle Mode:

Execute a Reset. All system and peripheral control registers are Reset to their default values and the contents of all data registers are retained. The Reset automatically selects a slow clock ($f_{OSC}/16$) because CLKCON.3 and

CLKCON.4 are cleared to "00B". If interrupts are masked, a Reset is the only way to release Idle Mode.

Activate any enabled interrupt, causing Idle Mode to be released. When you use an interrupt to release Idle Mode, the CLKCON.3 and CLKCON.4 register values remain unchanged, and the currently selected clock value is used. The interrupt is then serviced. Following the IRET from the service routine, the instruction immediately following the one that initiated Idle Mode is executed.

NOTES

- 1. Only external interrupts that are not clock-related can be used to release Stop Mode. To release Idle Mode; however, any type of interrupt (that is, internal or external) can be used.
- 2. Before entering Stop or Idle modes, the ADC must be disabled; otherwise, Stop or Idle current will be

significantly increased.

8.3 Hardware Reset Values

Table 8-1 lists the values for CPU and system registers, peripheral control registers, and peripheral data registers following a Reset operation in normal operating mode.

A 1 or a 0 shows the Reset bit value as logic one or logic zero, respectively.

An "x" means that the bit value is undefined following a reset.

A dash ("--") means that the bit is either not used or not mapped.

		Address & Location		RESET V				/alue (Bit)			
Register Name	Mnemonic	Address	R/W	7	6	5	4	3	2	1	0
Timer 0 Counter Register	TOCNT	D0H	R	0	0	0	0	0	0	0	0
Timer 0 Data Register	TODATA	D1H	R/W	1	1	1	1	1	1	1	1
Timer 0 Control Register	T0CON	D2H	R/W	0	0	-	_	0	-	0	0
	Location D3H	is not mappe	ed								
Clock Control Register	CLKCON	D4H	R/W	0	_	_	0	0	_	_	_
System Flags Register	FLAGS	D5H	R/W	х	х	х	х	Ι	_	_	-
Lc	ocations D6H–D8	3H are not m	apped	•	•	•	•		•	•	
Stack Pointer Register	SP	D9H	R/W	х	х	х	х	х	х	х	х
	Location DAH	is not mapp	ed	•	•	•	•		•	•	
MDS Special Register	MDSREG	DBH	R/W	0	0	0	0	0	0	0	0
Basic Timer Control Register	BTCON	DCH	R/W	0	0	0	0	0	0	0	0
Basic Timer Counter Register	BTCNT	DDH	R	0	0	0	0	0	0	0	0
Test Mode Control Register	FTSTCON	DEH	W	_	_	0	0	0	0	0	0
System Mode Register	SYM	DFH	R/W	_	_	_	_	0	0	0	0

NOTE: -: Not mapped or not used, x: undefined

Table 8-1. Register Values After a Reset (Continued)

		Address		Bit Values After RE				SET			
Register Name	Mnemonic	Hex	R/W	7	6	5	4	3	2	1	0
Port 0 Data Register	P0	E0H	R/W	0	0	0	0	0	0	0	0
Port 1 Data Register	P1	E1H	R/W	-	_	-	-	_	0	0	0
Port 2 Data Register	P2	E2H	R/W	-	0	0	0	0	0	0	0
Lo	ocations E3H–E8	5H are not m	apped				L				
Port 0 Control High Byte Register	P0CONH	E6H	R/W	0	0	0	0	0	0	0	0
Port 0 Control Register	P0CON	E7H	R/W	0	0	0	0	0	0	0	0
Port 0 Interrupt Pending Register	P0PND	E8H	R/W	-	_	-	-	0	0	0	0
Port 1 Control Register	P1CON	E9H	R/W	0	0	-	-	0	0	0	0
Port 2 Control High Byte Register	P2CONH	EAH	R/W	-	0	0	0	0	0	0	0
Port 2 Control Low Byte Register	P2CONL	EBH	R/W	0	0	0	0	0	0	0	0
Flash memory Control Register	FMCON	ECH	R/W	0	0	0	0	0	_	_	0
Flash memory user programming enable register	FMUSR	EDH	R/W	0	0	0	0	0	0	0	0
Flash memory sector address High Byte Register	FMSECH	EEH	R/W	0	0	0	0	0	0	0	0
Flash memory sector address register (low byte)	FMSECL	EFH	R/W	0	0	0	0	0	0	0	0
PWM Data Register 1	PWMDATA1	F0H	R/W	0	0	0	0	0	0	0	0
PWM Extension Register	PWMEX	F1H	R/W	0	0	0	0	0	0	0	0
PWM Data Register	PWMDATA	F2H	R/W	0	0	0	0	0	0	0	0
PWM Control Register	PWMCON	F3H	R/W	0	0	_	0	0	0	0	0
Stop Control Register	STOPCON	F4H	R/W	0	0	0	0	0	0	0	0
La	ocations F5H–F6	H are not m	apped		•	•	•	•	•	•	
A/D Control Register	ADCON	F7H	R/W	0	0	0	0	0	0	0	0
A/D converter Data Register (High)	ADDATAH	F8H	R	x	х	x	x	х	х	х	х
A/D converter Data Register (Low)	ADDATAL	F9H	R	0	0	0	0	0	0	х	x
Lc	ocations FAH-FF	-H are not m	apped								

NOTE: – : Not mapped or not used, x: undefined

<	< Interrupt V	ector Address >>		
	ORG	0000H		
	VECTOR	00H,INT_94C4	;	S3F94C8/S3F94C4 has only one interrupt vector
<	< Smart Opt	ion >>		
	ORG	003CH		
	DB	00H	;	003CH, must be initialized to 0
	DB	00H	;	003DH, must be initialized to 0
	DB	0E7H	;	003EH, enable LVR (2.3 V)
	DB	03H	;	003FH, internal RC (3.2 MHz in V_{DD} = 5 V)
<	< Initialize S	ystem and Peripherals >>		
	ORG	0100H		
RESET:	DI LD LD LD	BTCON,#10100011B CLKCON,#00011000B SP,#0C0H	, , ,	disable interrupt Watch-dog disable Select non-divided CPU clock Stack pointer must be set
	LD LD LD LD LD	P0CONH,#10101010B P0CONL,#10101010B P1CON,#00001010B P2CONH,#01001010B P2CONL,#10101010B	;;	P0.0–P0.7 push-pull output P1.0–P1.1 push-pull output P2.0–P2.6 push-pull output
<	< Timer 0 se	ttings >>		
	LD LD	T0DATA,#50H T0CON,#01001010B		CPU = 3.2 MHz, interrupt interval = 6.4 msec f _{OSC} /256, Timer 0 interrupt enable
<	< Clear all da	ata registers from 00h to 5F	:H >	>>
RAM_CLR:	LD CLR INC CP JP	R0,#0 @R0 R0 R0,#0BFH ULE,RAM_CLR	- - - - - - - -	RAM clear
<	< Initialize of	her registers >>		
	•			

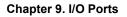
PROGRAMMING TIP — Sample S3F94C8/S3F94C4 Initialization Routin

• • EI

; Enable interrupt

PROGRAMMING TIP — Sample S3F94C8/S3F94C4 Initialization Routine (Continued)

, MAIN:	< Main loo NOP		; Start main loop
	LD	BTCON,#02H	; Enable watchdog function
			; Basic counter (BTCNT) clear
	•		
	• CALL	KEV SCAN	
	CALL	KEY_SCAN	•
	•		
	•		
	CALL	LED_DISPLAY	;
	•		
	•		
	• CALL	JOB	• •
	•	000	,
	•		
	•		
	JR	T,MAIN	;
	<< Subrouti		
, KEY_SCA	<< Subrouti		
1121_00/	•		,
	•		
	•		
	RET		
	PLAY: NOP		• •
	•		
	•		
	RET		
105	NOD		
JOB:	NOP		;
	•		
	•		
	RET		


Ŧ PROGRAMMING TIP — Sample S3F94C8/S3F94C4 Initialization Routine (Continued)

; INT_94C4:		ervice Routines >> T0CON,#00000010B Z,NEXT_CHK1 T0CON,#00000001B	, , , ,	Interrupt enable bit and pending bit check Timer 0 interrupt enable check If Timer 0 interrupt was occurred,
	JP	NZ,INT_TIMER 0	, ,	TOCON.0 bit would be set.
NEXT_CHK	(1: TM	PWMCOM,#00000010B		PWM overflow interrupt enable check
	JR TM JP	Z,NEXT_CHK2 P0PND,#00000001B NZ,PWMOVF_INT	, , , ,	
NEXT_CHK	(2: TM	P0PND,#00000010B		INT0 interrupt enable check
	JR TM JP	Z,NEXT_CHK3 P0PND,#00000001B NZ,INT0_INT	, , , ,	
NEXT_CHK	(3: TM	P0PND,#00001000B		INT1 interrupt enable check
	JP TM	Z,END_INT P0PND,#00000100B	;	
	JP IRET	NZ,INT1_INT	, , ,	Interrupt return
END_INT	; IRET			
; INT_TIMER		rrupt service routine >	-,	
	• AND IRET	T0CON,#1111 <u>0</u> 110B	, ,	Pending bit clear Interrupt return
; PWMOVF_		ow interrupt service routine	>	
	• AND IRET	PWMCON,#1111 <u>0</u> 110B	, , ,	Pending bit clear Interrupt return

PROGRAMMING TIP — Sample S3F94C8/S3F94C4 Initialization Routine (Continued)

;<	< External inte	rrupt0 service routine >		
INT0_INT:	•			
	• AND IRET	P0PND,#11111110B	- , ,	INT0 Pending bit clear Interrupt return
;<	< External inte	rrupt1 service routine >		
INT1_INT:	•	•		
	•			
	AND	P0PND,#11111011B	;	INT1 Pending bit clear
	IRET		;	Interrupt return
	•			

9.1 Overview

The S3F94C8/S3F94C4 has three I/O ports: with 18 pins total. You access these ports directly by writing or reading port data register addresses.

All ports can be configured as LED drive (High current output: typical 10 mA).

Port	Function Description	Programmability
0	0 Bit-programmable I/O port for Schmitt trigger input or push-pull output. Pull-up resistors are assignable by software. Port 0 pins can also be used as alternative function. (ADC input, external interrupt input).	
1	1 Bit-programmable I/O port for Schmitt trigger input or push-pull, open-drain output. Pull-up or pull-down resistors are assignable by software. Port 1 pins can also oscillator input/output or reset input by Smart Option. P1.2 is input only.	
2	Bit-programmable I/O port for Schmitt trigger input or push-pull, open-drain output. Pull-up resistor are assignable by software. Port 2 can also be used as alternative function (ADC input, CLO, T0 clock output)	Bit

Table 9-1. S3F94C8/S3F94C4 Port Configuration Overview

9.2 Port Data Registers

Table 9-2 gives you an overview of the port data register names, locations, and addressing characteristics. Data registers for ports 0-2 have the structure shown in Figure 9-1.

Register Name	Mnemonic	Hex	R/W
Port 0 Data Register	P0	E0H	R/W
Port 1 Data Register	P1	E1H	R/W
Port 2 Data Register	P2	E2H	R/W

 Table 9-2. Port Data Register Summary

NOTE: A reset operation clears the P0–P2 Data Register to "00H".

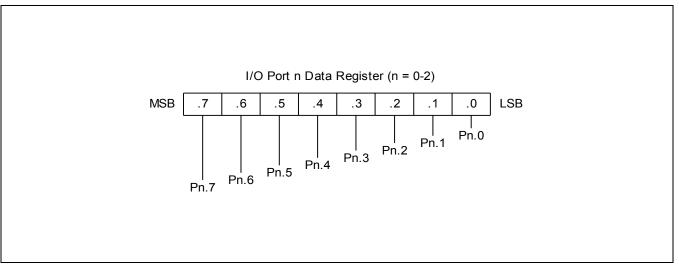


Figure 9-1. Port Data Register Format

9.2.1 Port 0

Port 0 is a bit-programmable, general-purpose, I/O ports. You can select normal input or push-pull output mode. In addition, you can configure a pull-up resistor to individual pins using control register settings.

It is designed for high-current functions such as LED direct drive. Part 0 pins can also be used as alternative functions (ADC input, external interrupt input and PWM output).

Two control resisters are used to control Port 0: P0CONH (E6H) and P0CONL (E7H).

You access Port 0 directly by writing or reading the corresponding port data register, P0 (E0H).

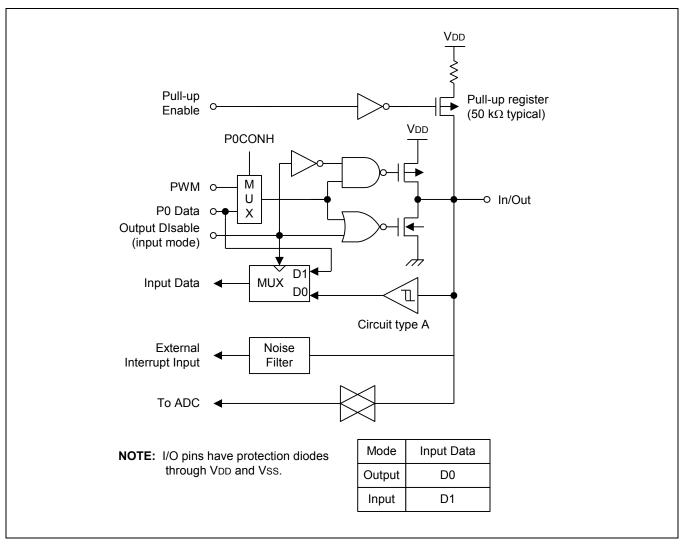


Figure 9-2. Port 0 Circuit Diagram

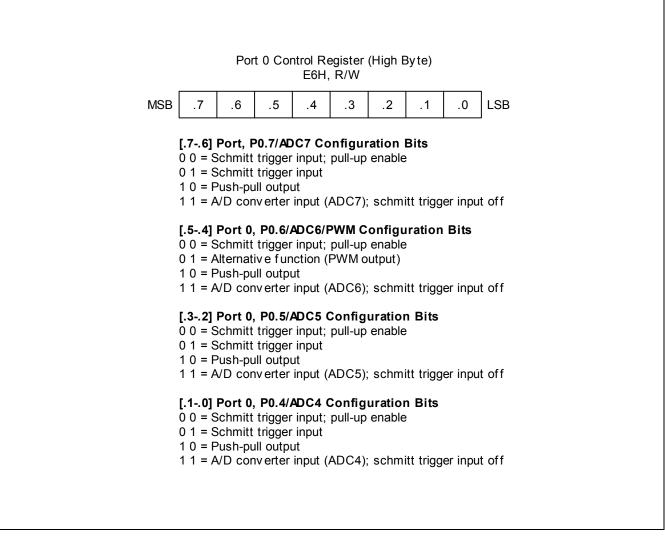


Figure 9-3. Port 0 Control Register (P0CONH, High Byte)

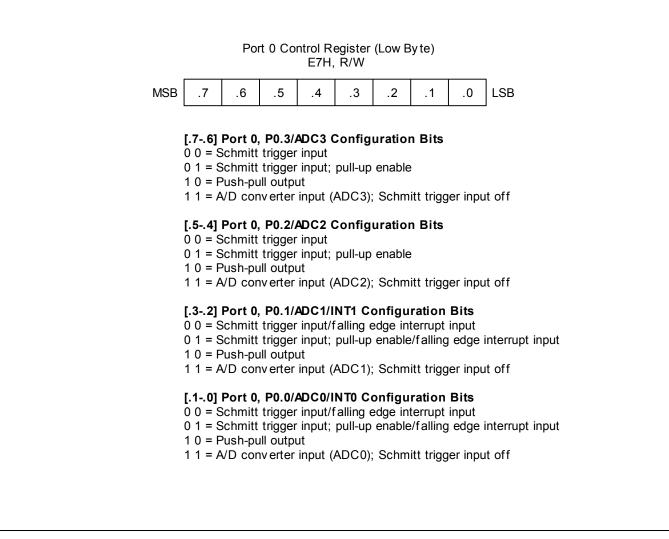


Figure 9-4. Port 0 Control Register (P0CONL, Low Byte)

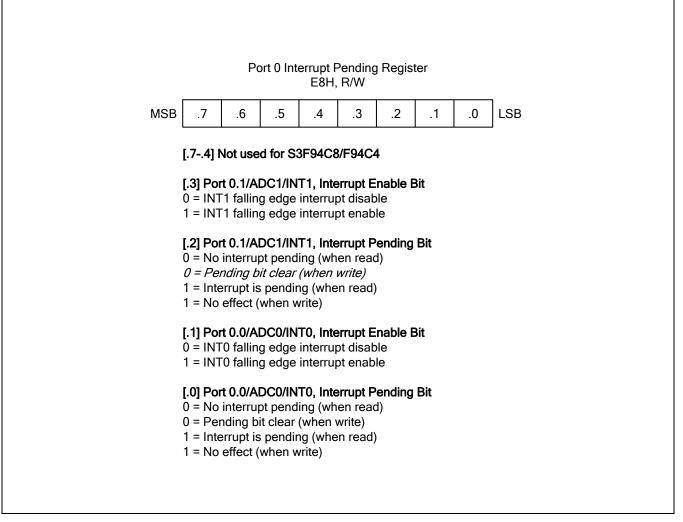


Figure 9-5. Port 0 Interrupt Pending Registers (P0PND)

PORT 1

Port 1, is a 3-bit I/O port with individually configurable pins. It can be used for general I/O port (Schmitt trigger input mode, push-pull output mode or n-channel open-drain output mode). In addition, you can configure a pull-up and pull-down resistor to individual pin using control register settings. It is designed for high-current functions such as LED direct drive.P1.0, P1.1 are used for oscillator input/output by Smart Option. Additionally, P1.2 is used for RESET pin by Smart Option (LVR disable).

NOTE:

When P1.2 is configured as a general I/O port, it can be used only for Schmitt trigger input. P1.2 is also shared with VPP pin for Flash Programming, so it have intrinsic internal pull-down resistor (about 300Kohm), Please consider about the pull-down resistor when it used as I/O port.

One control register is used to control Port 1: P1CON (E9H). You address Port 1 bits directly by writing or reading the Port 1 Data Register, P1 (E1H). When you use external oscillator, P1.0, P1.1 must be set to output port to prevent current consumption.

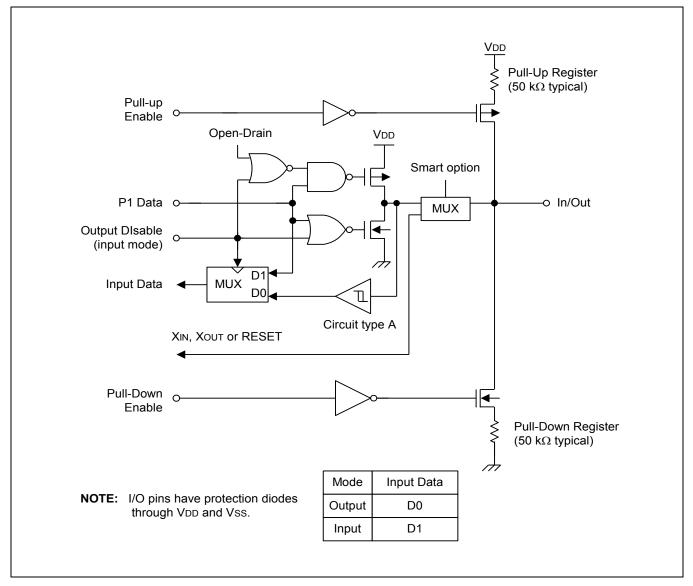
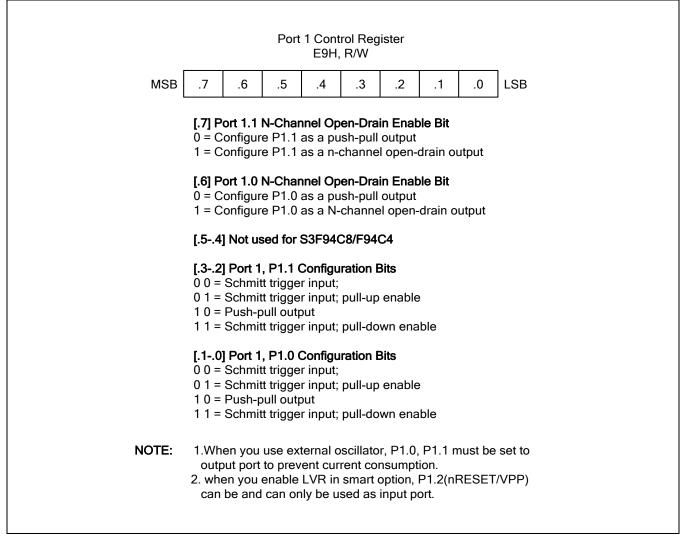



Figure 9-6. Port 1 Circuit Diagram

Figure 9-7. Port 1 Control Register (P1CON)

9.2.2 Port 2

Port 2 is a 7-bit I/O port with individually configurable pins. It can be used for general I/O port (Schmitt trigger input mode, push-pull output mode or N-channel open-drain output mode). You can also use some pins of Port 2 ADC input, CLO output and T0 clock output. In addition, you can configure a pull-up resistor to individual pins using control register settings. It is designed for high-current functions such as LED direct drive.

You address Port 2 bits directly by writing or reading the Port 2 Data Register, P2 (E2H). The Port 2 Control Register, P2CONH and P2CONL is located at addresses EAH, EBH respectively.

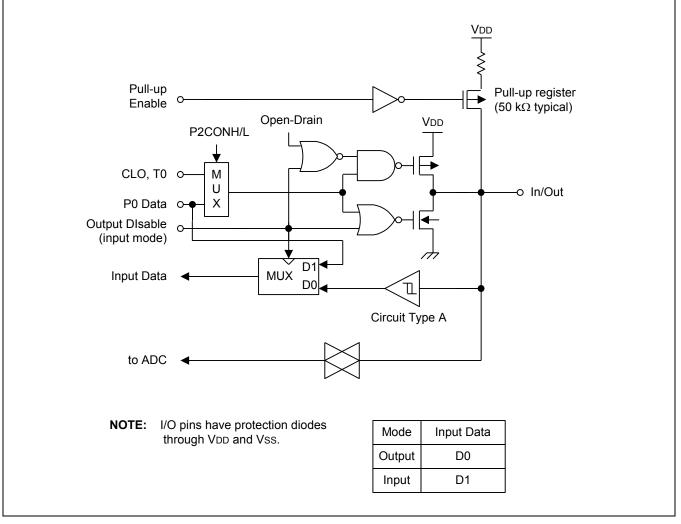


Figure 9-8. Port 2 Circuit Diagram

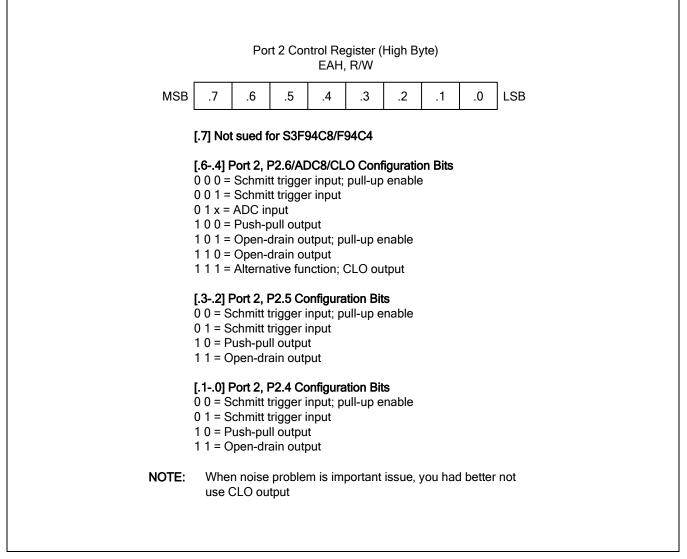


Figure 9-9. Port 2 Control Register (P2CONH, High Byte)

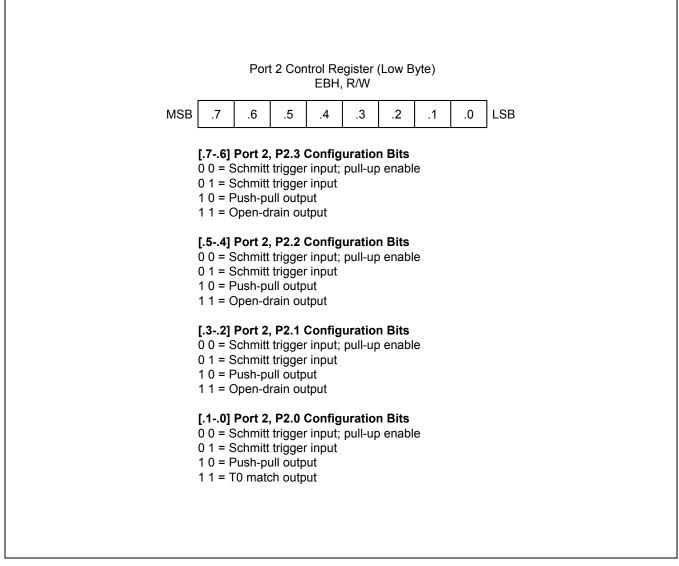


Figure 9-10. Port 2 Control Register (P2CONL, Low Byte)

10 Basic Timer and Timer 0

10.1 Module Overview

The S3F94C8/S3F94C4 has two default timers: an 8-bit basic timer, one 8-bit general-purpose timer/counter, called Timer 0.

10.1.1 Basic Timer (BT)

You can use the basic timer (BT) in two different ways: As a watchdog timer to provide an automatic Reset mechanism in the event of a system malfunction. To signal the end of the required oscillation stabilization interval after a Reset or a Stop Mode Release.

The functional components of the basic timer block are: Clock frequency divider (f_{OSC} divided by 4096, 1024, or 128) with multiplexer 8-bit basic timer counter, BTCNT (DDH, read-only) Basic Timer Control Register, BTCON (DCH, read/write) **10.1.2 Timer 0**

Timer 0 has the following functional components: Clock frequency divider (f_{OSC} divided by 4096, 256, 8, or f_{OSC}) with multiplexer 8-bit counter (T0CNT), 8-bit comparator, and 8-bit data register (T0DATA) Timer 0 Control Register (T0CON)

10.2 Basic Timer

10.2.1 Basic Timer Control Register

The Basic Timer Control Register, BTCON, is used to select the input clock frequency, to clear the basic timer counter and frequency dividers, and to enable or disable the watchdog timer function.

A Reset clears BTCON to "00H". This enables the watchdog function and selects a basic timer clock frequency of f_{OSC}/4096. To disable the watchdog function, you must write the signature code "1010B" to the basic timer register control bits BTCON.7–BTCON.4.

The 8-bit basic timer counter, BTCNT, can be cleared during normal operation by writing a 1 to BTCON.1. To clear the frequency dividers for both the basic timer input clock and the Timer 0 clock, you write a 1 to BTCON.0.

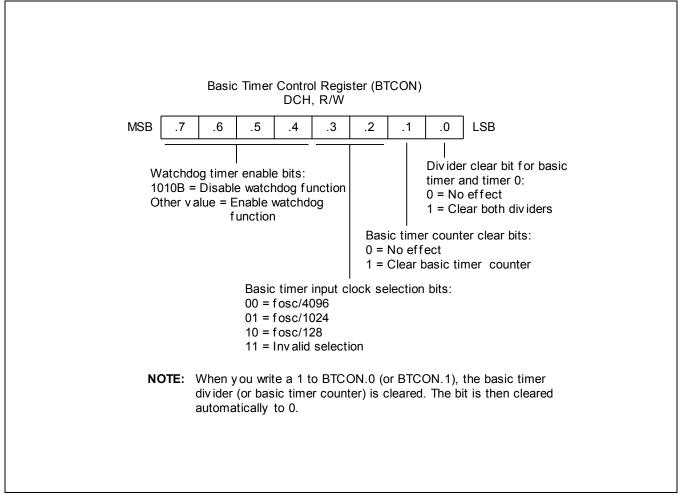


Figure 10-1. Basic Timer Control Register (BTCON)

10.3 Basic Timer Function Description

10.3.1 Watchdog Timer Function

You can program the basic timer overflow signal (BTOVF) to generate a Reset by setting BTCON.7–BTCON.4 to any value other than "1010B" (The "1010B" value disables the watchdog function). A Reset clears BTCON to "00H", automatically enabling the watchdog timer function. A Reset also selects the oscillator clock divided by 4096 as the BT clock.

A Reset whenever a basic timer counter overflow occurs. During normal operation, the application program must prevent the overflow, and the accompanying reset operation, from occurring. To do this, the BTCNT value must be cleared (by writing a 1 to BTCON.1) at regular intervals.

If a system malfunction occurs due to circuit noise or some other error condition, the BT counter clear operation will not be executed and a basic timer overflow will occur, initiating a Reset. In other words, during normal operation, the basic timer overflow loop (a bit 7 overflow of the 8-bit basic timer counter, BTCNT) is always broken by a BTCNT clear instruction. If a malfunction does occur, a Reset is triggered automatically.

10.3.2 Oscillation Stabilization Interval Timer Function

You can also use the basic timer to program a specific oscillation stabilization interval following a Reset or when Stop Mode has been released by an external interrupt.

In Stop Mode, whenever a Reset or an external interrupt occurs, the oscillator starts. The BTCNT value then starts increasing at the rate of $f_{OSC}/4096$ (for Reset), or at the rate of the preset clock source (for an external interrupt). When **BTCNT.7** is set, a signal is generated to indicate that the stabilization interval has elapsed and to gate the clock signal off to the CPU so that it can resume normal operation.

In summary, the following events occur when Stop Mode is released:

During Stop Mode, an external power-on Reset or an external interrupt occurs to trigger the Stop Mode Release and oscillation starts.

If an external power-on Reset occurred, the basic timer counter will increase at the rate of f_{OSC}/4096. If an external interrupt is used to release Stop Mode, the BTCNT value increases at the rate of the preset clock source. Clock oscillation stabilization interval begins and continues until bit 7 of the basic timer counter is set.

When a BTCNT.7 is set, normal CPU operation resumes.

Figure 10-2 and 10-3 shows the oscillation stabilization time on RESET and Stop Mode Release

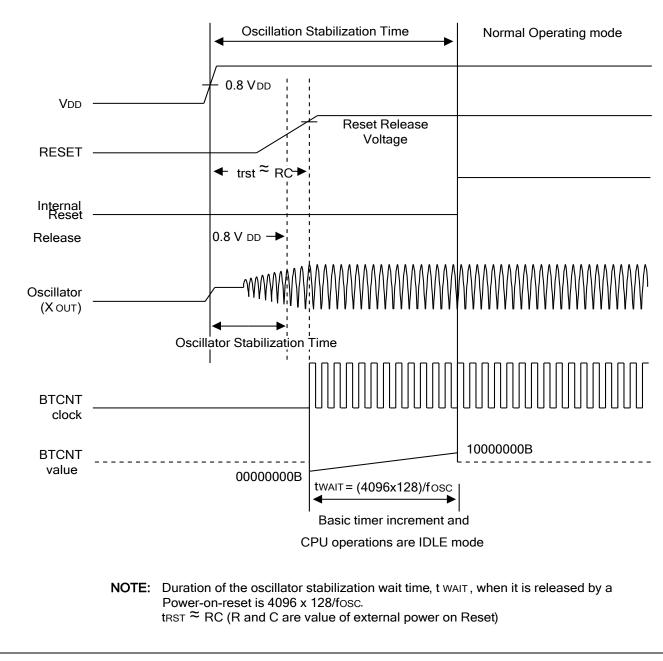


Figure 10-2. Oscillation Stabilization Time on RESET

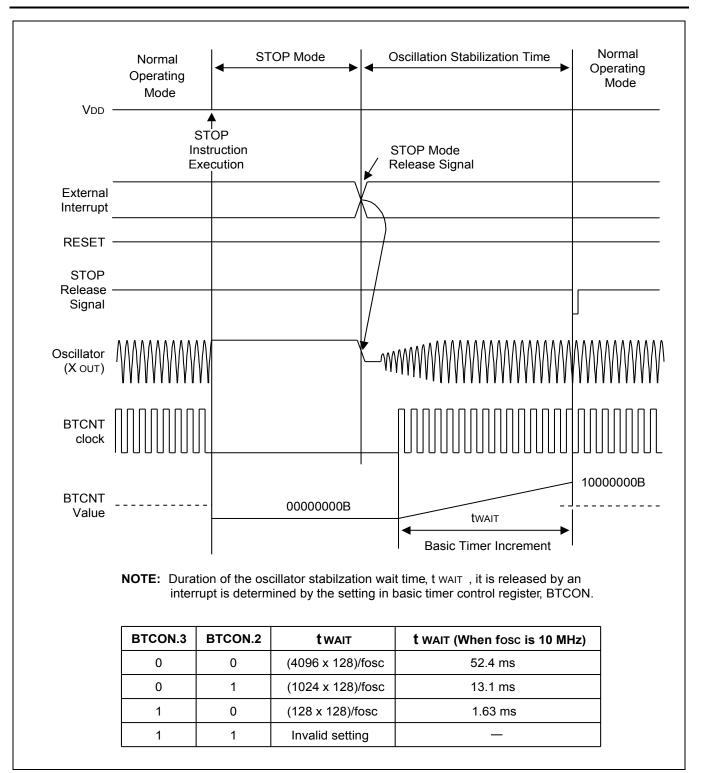


Figure 10-3. Oscillation Stabilization Time on Stop Mode Release

PROGRAMMING TIP — Configuring the Basic Timer

The following example shows how to configure the basic timer to sample specification. ORG 0000H 00H, INT_94C4 ; S3F94C8/S3F94C4 has only one interrupt vector VECTOR ------ Smart Option >> ORG 003CH DB 00H 003CH, must be initialized to 0 DB 00H 003DH, must be initialized to 0 ; DB ; 003EH, enable LVR (2.3 V) 0E7H DB 03H 003FH, internal RC (3.2 MHz in V_{DD} = 5 V) ;----- <-- Initialize System and Peripherals >>> ORG 0100H RESET: DL Disable interrupt Select non-divided CPU clock LD CLKCON, #00011000B LD SP, #0C0H ; Stack pointer must be set . LD BTCON,#02H Enable watchdog function Basic timer clock: f_{OSC}/4096 ; Basic counter (BTCNT) clear ΕI Enable interrupt ;-----< Main loop >> MAIN: LD BTCON, #02H ; Enable watchdog function Basic counter (BTCNT) clear : JR T, MAIN ; ;----- << Interrupt Service Routines >> INT 94C4: Interrupt enable bit and pending bit check Pending bit clear IRET END ;

10.4 Timer 0

10.4.1 Timer 0 Control Registers

The Timer 0 Control Register, T0CON, is used to select the Timer 0 operating mode (interval timer) and input clock frequency to clear the Timer 0 counter and to enable the T0 match interrupt. It also contains a pending bit for T0 match interrupts.

A Reset clears T0CON to "00H". This sets Timer 0 to normal Interval Timer Mode, selects an input clock frequency of $f_{OSC}/4096$, and disables the T0 match interrupts. The T0 counter can be cleared at any time during normal operation by writing a 1 to T0CON.3.

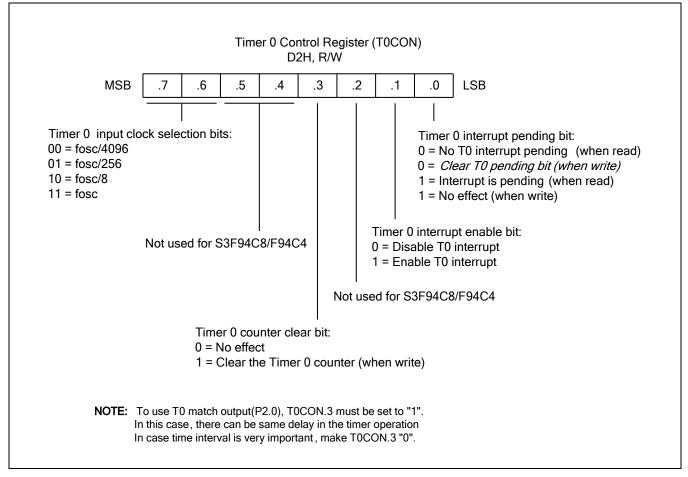


Figure 10-4. Timer 0 Control Registers (T0CON)

10.5 Timer 0 Function Description

10.5.1 Interval Timer Mode

In Interval Timer Mode, a match signal is generated when the counter value is identical to the value written to the Timer 0 Reference Data Register, T0DATA. The match signal generates a Timer 0 match interrupt (T0INT, vector 00H) and then clears the counter. If, for example, you write the value "10H" to T0DATA, the counter will increment until it reaches "10H". At this point, the Timer 0 interrupt request is generated; the counter value is reset and counting resumes.

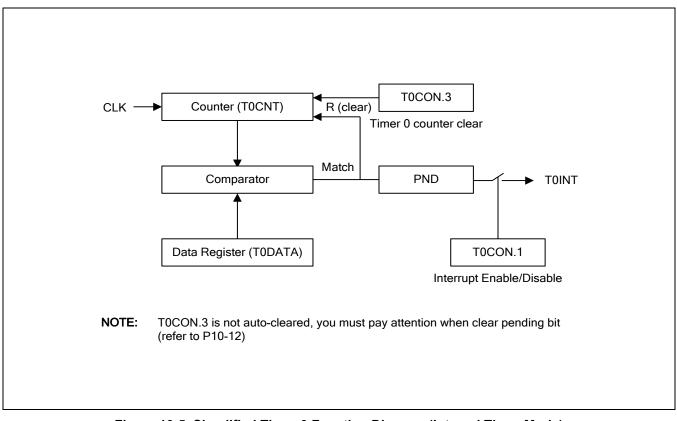


Figure 10-5. Simplified Timer 0 Function Diagram (Interval Timer Mode)

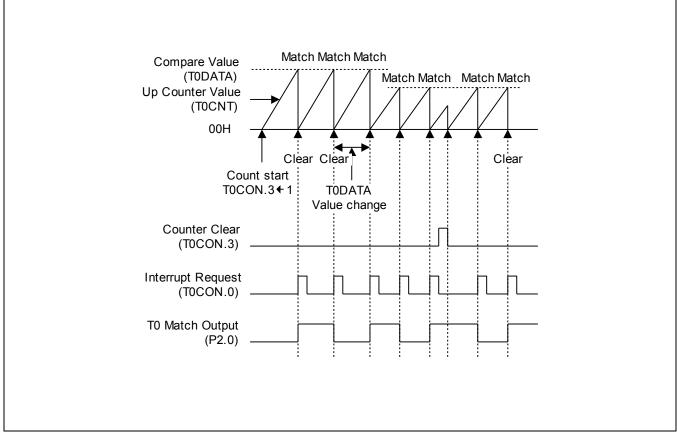


Figure 10-6. Timer 0 Timing Diagram

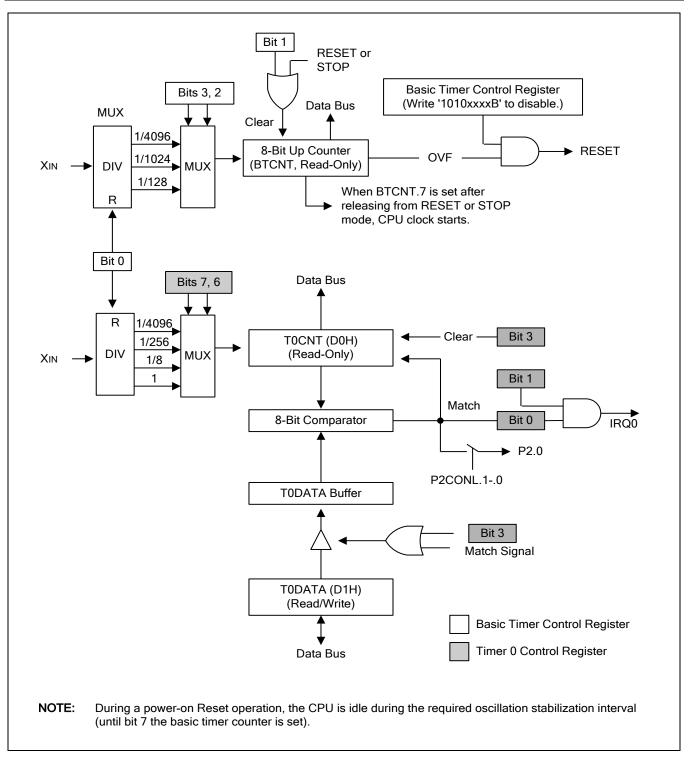


Figure 10-7. Basic Timer and Timer 0 Block Diagram

PROGRAMMING TIP1 – Configuring Timer 0 (Interval Mode)

The following sample program sets Timer 0 to Interval Timer Mode.

	ORG VECTOR	0000H 00H, INT_94C4	;	S3F94C8/S3F94C4 has only one interrupt vector
	ORG DB DB DB DB	003CH 00H 00H 0E7H 03H	- , , , ,	003CH, must be initialized to 0 003DH, must be initialized to 0 003EH, enable LVR (2.3 V) 003FH, internal RC (3.2 MHz in V _{DD} = 5 V)
RESET:	ORG DI LD LD LD LD LD LD LD LD	0100H BTCON,#10100011B CLKCON,#00011000B SP,#0C0H P0CONH,#10101010B P0CONL,#10101010B P1CON,#00001010B P2CONH,#01001010B P2CONL,#10101010B	- - - - - - - - - - - - - - - - - - -	Disable interrupt Watchdog disable Select non-divided CPU clock Set stack pointer P0.0–0.7 push-pull output P1.0–P1.1 push-pull output P2.0–P2.6 push-pull output
;	<< Timer 0 set	ttings >>		
	LD LD •	T0DATA, #50H T0CON, #01001010B		CPU = 3.2 MHz, interrupt interval = 4 msec f _{OSC} /256, Timer 0 interrupt enable
; MAIN:	EI << Main loop NOP	>>	- , ,	Enable interrupt Start main loop
	• CALL •	LED_DISPLAY	;	Sub-block module
	• CALL •	JOB	,	Sub-block module
	• JR	T, MAIN	;	

	- J	J	
LED_DISPLAY:	NOP		
		,	
	•	,	
	•	,	
	• RET	,	
		,	
JOB:	NOP	;	
	•	,	
	•	;	
	•	;	
	RET	;	
	errupt Service Routines		
INT_94C4:	TM T0CON,#000	00010B ;	Interrupt enable check
	JR Z,NEXT_CHM	(1;	
	TM T0CON, #000)00001B ;	If Timer 0 interrupt was occurred,
	JP NZ,INT_TIME	ER 0 ;	T0CON.0 bit would be set.
NEXT_CHK1:	•	;	Interrupt enable bit and pending bit check
—	•		
	•	:	
	IRET		
INT_TIMER 0:		,	Timer 0 interrupt service routine
	•	,	
	•		
	•		
	• AND T0CON, #111	1101100 .	Pending bit clear
	IRET		Fending bit clear
	IREI	,	
	•		
	END	,	

PROGRAMMING TIP1 – Configuring Timer 0 (Interval Mode) (Continued)

Pulse Width Modulation

11.1 Overview

This microcontroller has the PWM circuit. The PWM can be configured as one of these three resolutions:

8-bit resolution: 6-bit base + 2-bit extension

12-bit resolution: 6-bit base + 6-bit extension

14-bit resolution: 8-bit base + 6-bit extension

These three resolutions are mutually exclusive; only one resolution can work at any time. And which resolution is used is selected by PWMEX.1-.0.

The operation of all PWM circuit is controlled by a single control register, PWMCON.

The PWM counter is an incrementing counter. It is used by the PWM circuits. To start the counter and enable the PWM circuits, set PWMCON.2 to 1. If the counter is stopped, it retains its current count value; when restarted, it resumes counting from the retained count value. When there is a need to clear the counter set PWMCON.3 to 1.

You can select a clock for the PWM counter by set PWMCON.6-.7. Clocks which you can select are $f_{OSC}/64$, $f_{OSC}/8$, $f_{OSC}/2$, $f_{OSC}/1$.

11.2 Function Description

11.2.1 PWM

The PWM circuits have the following components: PWM mode selection (PWMEX.1-.0) Base comparator and extension cycle circuit Base reference data registers (PWMDATA, PWMDATA1) Extension data registers (PWMEX) PWM output pins (P0.6/PWM)

11.2.2 PWM Counter

The PWM counter is an incrementing counter comprised of a lower base counter and an upper extension counter.

To determine the PWM module's base operating frequency, the lower base counter is compared to the PWM base data register value. In order to achieve higher resolutions, the extension bits of the upper counter can be used to modulate the "stretch" cycle. To control the "stretching" of the PWM output duty cycle at specific intervals, the extended counter value is compared with the value that you write to the module's extension bits.

11.2.3 PWM Data and Extension Registers

PWM (duty) data consist of base data bits and extension data bits; determine the output value generated by the PWM circuit. For each PWM resolution, the location of base data bits and extension data bits are different combination of register PWMDATA (F2H), PWMDATA1 (F0H) and PWMEX (F1H):

8-bit resolution, 6-bit base + 2-bit extension: ■ Base 6 data bits: PWMDATA.7-.2

■ Extension 2 bits: PWMDATA.1-.0

12-bit resolution, 6-bit base + 6-bit extension:

- Base 6 data bits: PWMDATA1.5-.0
- Extension 6 bits: PWMEX.7-.2

14-bit resolution, 8-bit base + 6-bit extension:

- Base 8 data bits: PWMDATA1.7-.0.
- Extension 6 bits: PWMEX.7-.2

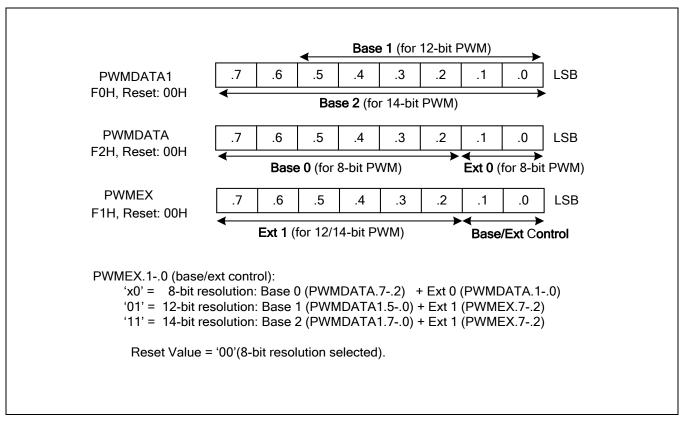


Figure 11-1. PWM Data and Extension Registers

To program the required PWM output, you load the appropriate initialization values into the data registers (PWMDATA) and the extension registers (PWMEX). To start the PWM counter, or to resume counting, set PWMCON.2 to 1.

A reset operation disables all PWM output. The current counter value is retained when the counter stops. When the counter starts, counting resumes at the retained value.

11.2.4 PWM Clock Rate

The timing characteristic of PWM output is based on the f_{OSC} clock frequency. The PWM counter clock value is

determined by the setting of PWMCON.6-.7.

Register Name	Mnemonic	Address	Function
PWM data registers	PWMDATA	F2H	PWM waveform output setting registers.
	PWMDATA1	F0H	
	PWMEX	F1H	
PWM control registers	PWMCON	F3H	PWM counter stop/start (resume), and f _{OSC} clock settings

Table 11-1. PWM Control and Data Registers

11.2.5 PWM Function Description

The PWM output signal toggles to Low level whenever the lower base counter matches the reference value stored in the module's data register (PWMDATA). If the value in the PWMDATA register is not zero, an overflow of the lower counter causes the PWM output to toggle to High level. In this way, the reference value written to the data register determines the module's base duty cycle.

The value in the extension counter is compared with the extension settings in the extension data bits. This extension counter value, together with extension logic and the PWM module's extension bits, is then used to "stretch" the duty cycle of the PWM output. The "stretch" value is one extra clock period at specific intervals, or cycles (see Table 11-2).

If, for example, in 8-bit base + 6-bit extension mode, the value in the extension register is '04H', the 32nd cycle will be one pulse longer than the other 63 cycles. If the base duty cycle is 50 %, the duty of the 32nd cycle will therefore be "stretched" to approximately 51% duty. For example, if you write 80H to the extension register, all odd-numbered cycles will be one pulse longer. If you write FCH to the extension register, all cycles will be stretched by one pulse except the 64th cycle. PWM output goes to an output buffer and then to the corresponding PWM output pin. In this way, you can obtain high output resolution at high frequencies.

11.2.6 PWM Output Waveform

6-bit base + 2-bit extension mode:

Table 11-2. PWM output "stretch" Values for Extension Data bits Ext0 (PWMDATA.1–.0)

PWMDATA Bit (Bit1–Bit0)	"Stretched" Cycle Number
00	_
01	2
10	1, 3
11	1, 2, 3

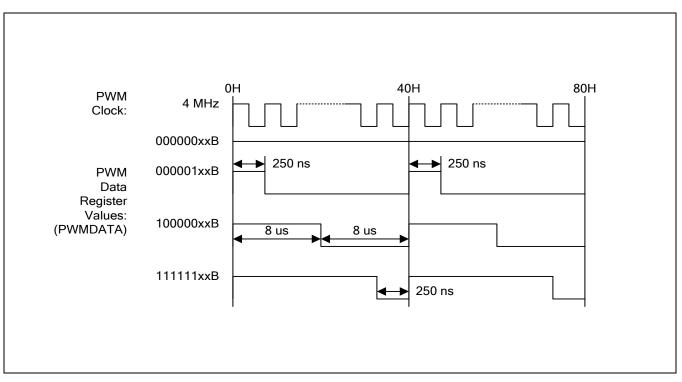


Figure 11-2. PWM Basic Waveform (6-bit base)

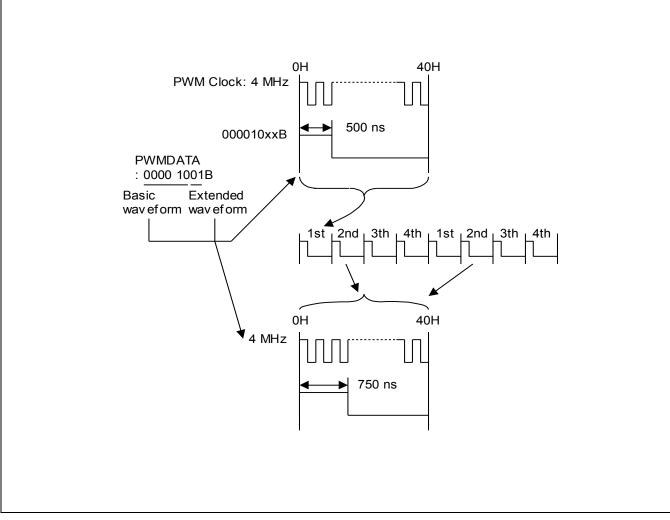


Figure 11-3. Extended PWM Waveform (6-bit base + 2-bit extension)

6-bit base + 6-bit extension mode:

PWMEX Bit	"Stretched" Cycle Number
7	1, 3, 5, 7, 9, , 55, 57, 59, 61, 63
6	2, 6, 10, 14, , 50, 54, 58, 62
5	4, 12, 20, , 44, 52, 60
4	8, 24, 40, 56
3	16, 48
2	32

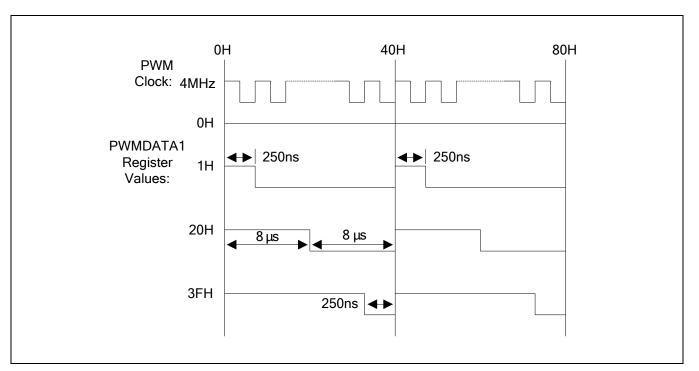


Figure 11-4. PWM Basic Waveform (6-bit base)

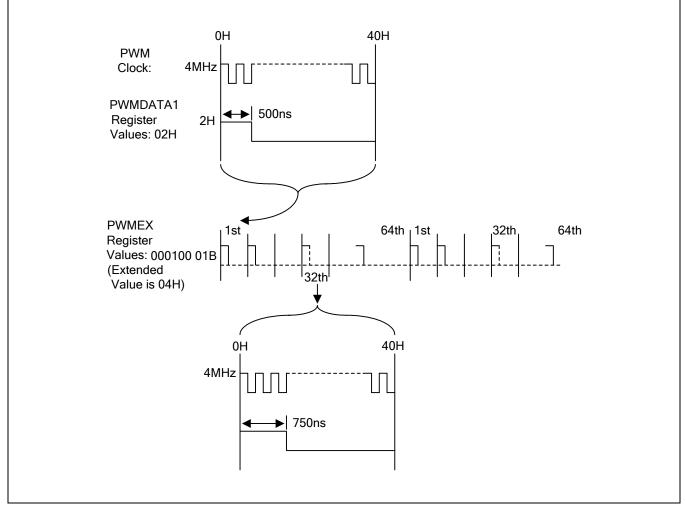


Figure 11-5. Extended PWM Waveform (6-bit base + 6-bit extension)

8-bit base + 6-bit extension mode:

Table 11-4. PWM output "stretch	" Values for Extension Data bits Ext1 (PWMEX.72)
---------------------------------	--

PWMEX Bit	"Stretched" Cycle Number
7	1, 3, 5, 7, 9, , 55, 57, 59, 61, 63
6	2, 6, 10, 14, , 50, 54, 58, 62
5	4, 12, 20, , 44, 52, 60
4	8, 24, 40, 56
3	16, 48
2	32

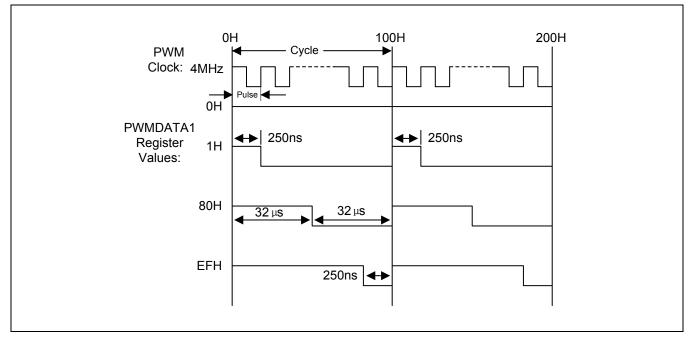


Figure 11-6. PWM Basic Waveform (8-bit base)

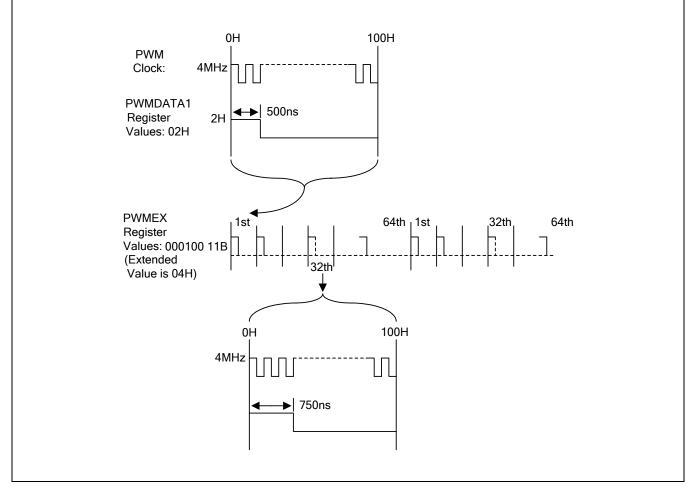


Figure 11-7. PWM Basic Waveform (8-bit base + 6-bit extension)

11.2.7 PWM Control Register

The control register for the PWM module, PWMCON, is located at register address F3H. PWMCON is used for all three PWM resolutions. Bit settings in the PWMCON register control the following functions:

PWM counter clock selection

PWM data reload interval selection

PWM counter clear

PWM counter stop/start (or resume) operation

PWM counter overflow (upper counter overflow) interrupt control

A reset clears all PWMCON bits to logic zero, disabling the entire PWM module.

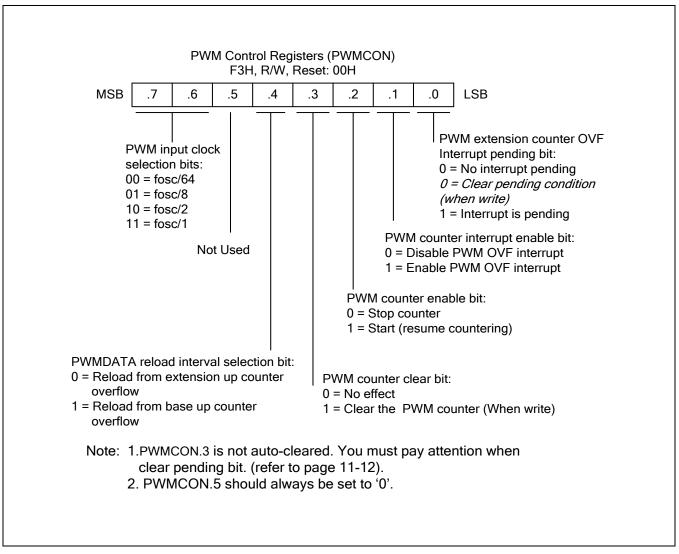


Figure 11-8. PWM Control Register (PWMCON)

11.2.8 PWM Extension Register (PWMex)

The extension register for the PWM module, PWMEX, is located at register address F1H. PWMEX are used for resolution selection and extension bits of 6+6 and 8+6 resolution. Bit settings in the PWMEX register control the

following functions:

PWM Extension bits for 6+6 resolution and 8+6 resolution mode PWM resolution selection

A reset clears all PWMEX bits to logic zero, choose 6+2 as default resolution, no extension.

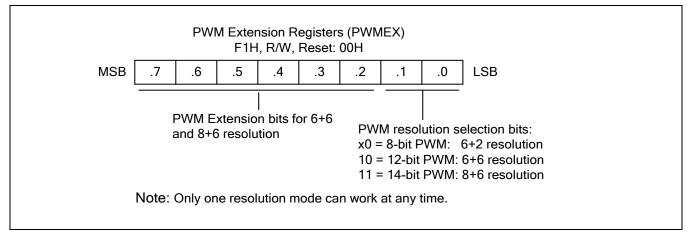


Figure 11-9. PWM Extension Register (PWMEX)

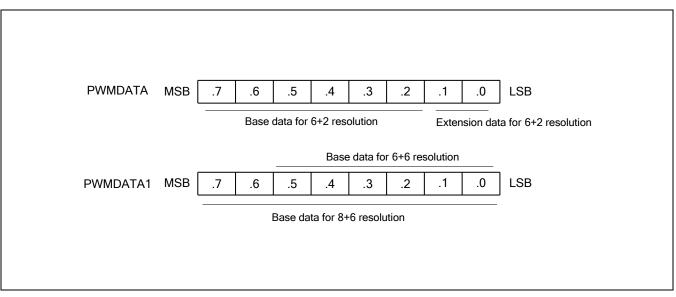


Figure 11-10. PWM Data Register (PWMDATA)

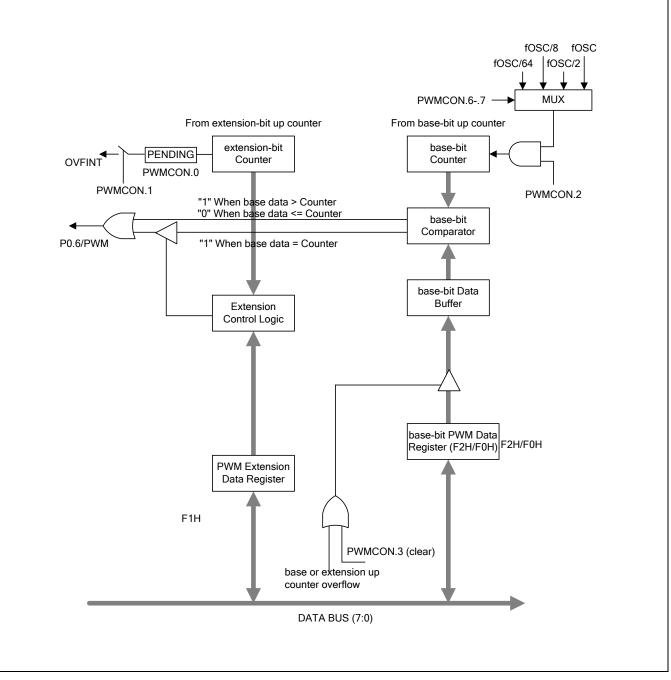


Figure 11-12. PWM Module Functional Block Diagram

PROG	RAMMING	TIP — Programming the	PWM Module to Sample Specifications
;	<< Interrupt V VECTOR	vector Address >> 00H, INT 94C4	; S3F94C8/S3F94C4 interrupt vector
			,
;	<< Smart C	Option >>	
	ORG	003CH	
	DB DB	000H 000H	; 003CH, must be initialized to 1.; 003DH, must be initialized to 1.
	DB	0FFH	; 003EH, Enable LVR (2.3)
	DB	000H	; 003FH, External Crystal oscillator
;<	< Initialize S ORG	ystem and Peripherals >> 0100H	
RESET:	DI		; disable interrupt
	LD	BTCON,#10100011B	; Watchdog disable
	•		
	LD LD	PWMEX,#00000000B P0CONH,#10011010B	; Configure PWM as 6-bit base +2-bit extension; Configure P0.6 PWM output
	LD	PWMCON,#00000110B	; f _{OSC} /64, counter/interrupt enable
	AND	PWMEX,#00000011B	; set extension bits as 00(basic output)
		LD	PWMDATA,#80H ;
	•		
	• El		; Enable interrupt
·	<< Main loop	>>	
, MAIN:	inum toop		•
	•		;
	•		,
	•		,
	JR	t,MAIN	· ·
INT_94C4:			; 94C4 interrupt service routine
	•		
	•		
	AND	PWMCON,#1111 <u>0</u> 11 <u>0</u> B	; pending bit clear
	IRET		;
	•		
	END		

12 A/D Converter

12.1 Overview

The 10-bit A/D converter (ADC) module uses successive approximation logic to convert analog levels entering at one of the nine input channels to equivalent 10-bit digital values. The analog input level must lie between the V_{DD} and V_{SS} values. The A/D converter has the following components:

Analog comparator with successive approximation logic

- D/A converter logic
- ADC Control Register (ADCON)
- Nine multiplexed analog data input pins (ADC0–ADC8)

10-bit A/D conversion data output register (ADDATAH/L)

To initiate an analog-to-digital conversion procedure, you write the channel selection data in the A/D Converter Control Register, ADCON, to select one of the nine analog input pins (ADCn, n = 0-8) and set the conversion start or enable bit, ADCON.0. The read-write ADCON register is located at address F7H.

During a normal conversion, ADC logic initially sets the successive approximation register to 200H (the approximate half-way point of a 10-bit register). This register is then updated automatically during each conversion step. The successive approximation block performs 10-bit conversions for one input channel at a time. You can dynamically select different channels by manipulating the channel selection bit value (ADCON.7–4) in the ADCON register. To start the A/D conversion, you should set a the enable bit, ADCON.0. When a conversion is completed, ACON.3, the end-of-conversion (EOC) bit is automatically set to 1 and the result is dumped into the ADDATA register where it can be read. The A/D converter then enters an idle state. Remember to read the contents of ADDATA before another conversion starts. Otherwise, the previous result will be overwritten by the next conversion result.

NOTE

Because the ADC does not use sample-and-hold circuitry, it is important that any fluctuations in the analog level at the ADC0–ADC8 input pins during a conversion procedure be kept to an absolute minimum. Any change in the input level, perhaps due to circuit noise, will invalidate the result.

12.1.1 Using A/D Pins for Standard digital Input

The ADC module's input pins are alternatively used as digital input in Port 0 and P2.6.

12.1.2 A/D Converter Control Register (ADCON)

The A/D Converter Control Register, ADCON, is located at address F7H. ADCON has four functions:

Bits 7–4 select an analog input pin (ADC0–ADC8)

Bit 3 indicates the status of the A/D conversion

Bits 2–1 select a conversion speed

Bit 0 starts the A/D conversion

Only one analog input channel can be selected at a time. You can dynamically select any one of the nine analog input pins (ADC0–ADC8) by manipulating the 4-bit value for ADCON.7–ADCON.4.

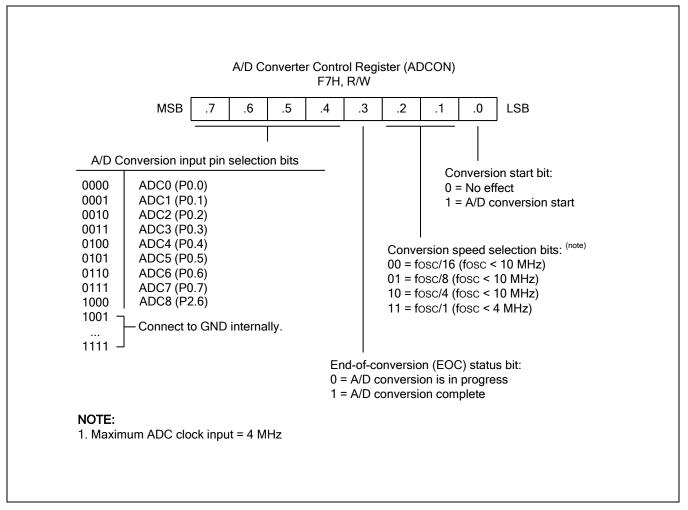


Figure 12-1. A/D Converter Control Register (ADCON)

12.1.3 Internal Reference Voltage Levels

In the ADC function block, the analog input voltage level is compared to the reference voltage. The analog input level must remain within the range V_{SS} to V_{DD} .

Different reference voltage levels are generated internally along the resistor tree during the analog conversion process for each conversion step. The reference voltage level for the first bit conversion is always $1/2 V_{DD}$.

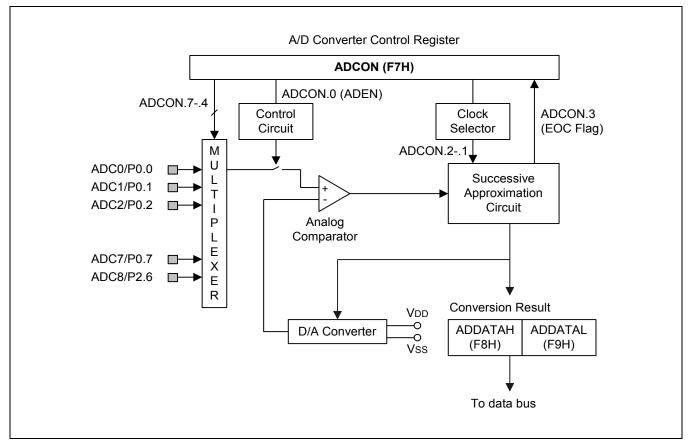


Figure 12-2. A/D Converter Circuit Diagram

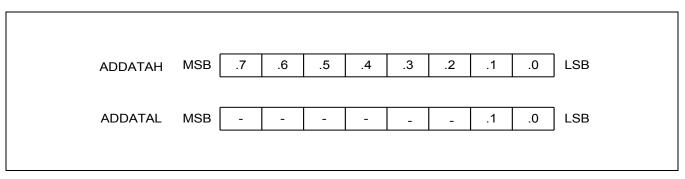


Figure 12-3. A/D Converter Data Register (ADDATAH/L)

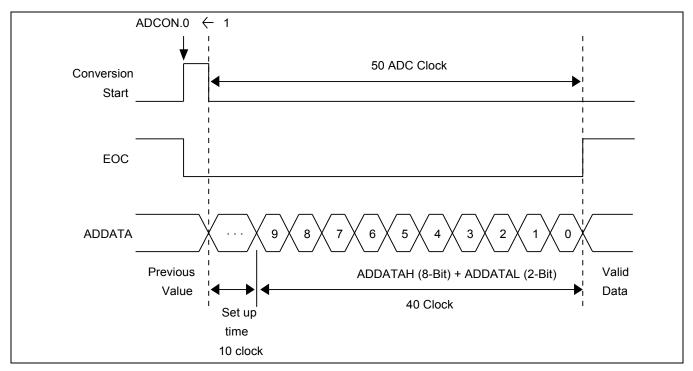


Figure 12-4. A/D Converter Timing Diagram

12.1.4 Conversion timing

The A/D conversion process requires 4 steps (4 clock edges) to convert each bit and 10 clocks to step-up A/D conversion. Therefore, total of 50 clocks is required to complete a 10-bit conversion: With a 10 MHz CPU clock frequency, one clock cycle is 400 ns (4/fxx). If each bit conversion requires 4 clocks, the conversion rate is calculated as follows:

4 clocks/bit x 10-bits + step-up time (10 clock) = 50 clocks 50 clock x 400 ns = 20 μ s at 10 MHz, 1 clock time = 4/fxx (assuming ADCON.2–.1 = 10)

12.1.5 Internal A/D Conversion Procedure

- 1. Analog input must remain between the voltage range of V_{SS} and V_{DD}
- 2. Configure the analog input pins to input mode by making the appropriate settings in P0CONH, P0CONL and P2CONH registers.
- 3. Before the conversion operation starts, you must first select one of the nine input pins (ADC0–ADC8) by writing the appropriate value to the ADCON register.
- 4. When conversion has been completed, (50 clocks have elapsed), the EOC flag is set to 1, so that a check can be made to verify that the conversion was successful.
- 5. The converted digital value is loaded to the output register, ADDATAH (8-bit) and ADDATAL (2-bit), and then the ADC module enters an idle state.
- 6. The digital conversion result can now be read from the ADDATAH and ADDATAL registers.

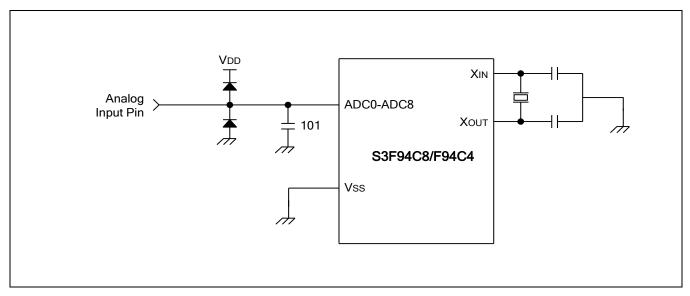


Figure 12-5. Recommended A/D Converter Circuit for Highest Absolute Accuracy

PROGRAMMING TIP – Configuring A/D Converter

	;<-< Interrupt Vector Address >> VECTOR 00H, INT_TIMER 0 ; S3F94C8/S3F94C4 has only one interrupt vector						
;<			,				
DEOET.	ORG DB DB DB DB ORG	003CH 000H 000H 0FFH 003H 0100H	- - - - - - - - - - - - -	003CH, must be initialized to 0 003DH, must be initialized to 0 003EH, enable LVR 003FH, internal RC oscillator			
RESET:	DI LD	BTCON,#10100011B	;	disable interrupt Watchdog disable			
	•		,				
	LD LD LD EI	P0CONH,#11111111B P0CONL,#11111111B P2CONH,#00100000B	, , , ,	Configure P0.4–P0.7 AD input Configure P0.0–P0.3 AD input Configure P2.6 AD input Enable interrupt			
;<< MAIN:	Main loop) >>					
	CALL	AD_CONV	;	Subroutine for AD conversion			
	• JR	t, MAIN	;				
AD_CONV:	LD	ADCON, #00000001B	;	Select analog input channel \rightarrow P0.0 select conversion speed \rightarrow f _{OSC} /16 set conversion start bit			
	NOP		;	If you select conversion speed to f _{OSC} /16 at least one NOP must be included			

PROGRAMMING TIP – Configuring A/D Converter (Continued)

CONV_LOOP:	TM JR LD LD LD	ADCON,#00001000B Z,CONV_LOOP R0,ADDATAH R1,ADDATAL ADCON,#00010011B	- - - - - - - - - - - - - - - - - - -	Check EOC flag If EOC flag=0, jump to CONV_LOOP until EOC flag=1 High 8 bits of conversion result are stored to ADDATAH register Low 2 bits of conversion result are stored to ADDATAL register Select analog input channel \rightarrow P0.1 Select conversion speed \rightarrow f _{OSC} /8 Set conversion start bit
CONV_LOOP2	2:TM JR LD LD • • RET	ADCON,#00001000B Z,CONV_LOOP2 R2,ADDATAH R3,ADDATAL	, , ,	Check EOC flag
INT_TIMER 0:	• IRET • END		- - - - - -	Pending bit clear

Embedded Flash Memory Interface

13.1 Overview

The S3F94C8/S3F94C4 has an on-chip Flash memory internally instead of masked ROM. The Flash memory is accessed by instruction 'LDC'. This is a sector erasable and a byte programmable Flash. User can program the data in a Flash memory area any time you want. The S3F94C8/S3F94C4's embedded 8K/4K memory offers the following two operating features:

Tool Program Mode: Refer to the chapter 16. S3F94C8/S3F94C4 Flash MCU User Program Mode

13.1.1 Flash ROM Configuration

The S3F94C8/S3F94C4 Flash memory consists of 64 sectors (S3F94C8) or 32sectors (S3F94C4). Each sector consists of 128bytes. Therefore, the total size of Flash memory is 64 x128 (8KB) or 32x128 bytes (4KB). User can erase the Flash memory by a sector unit at a time and write the data into the Flash memory by a byte unit at a time. 8K/4KB Internal Flash memory

Sector size: 128 bytes

10 years data retention

Fast programming Time:

- Sector Erase: 8ms (min)
- Byte Program: 25us (min)

Byte programmable User programmable by 'LDC' instruction Sector (128 bytes) erase available Endurance: 10,000 Erase/Program cycles (min)

13.1.2 Tool Program Mode

This mode is for erasing and programming full area of Flash memory by external programming tools. The 5 pins of S3F94C8/S3F94C4 are connected to a programming tool and then internal Flash memory of S3F94C8/S3F94C4 can be programmed by Serial OTP/MTP Tools, SPW2 plus single programmer or GW-PRO2 gang programmer and so on. The other modules except Flash memory module are at a reset state. This mode doesn't support the sector erase but chip erase (all Flash memory erased at a time) and two protection modes (Hard lock protection/Read protection). The read protection mode is available only in tool program mode. So in order to make a chip into read protection, you need to select a read protection option when you write a program code to a chip in tool program mode by using a programming tool. After read protect, all data of Flash memory read "00". This protection is released by chip erase execution in the tool program mode.

Main Chip	During Programming				
Pin Name	Pin Name	Pin No.	I/O	Function	
P0.1	SDAT	18 (20-pin) 14 (16-pin)	I/O	Serial data pin (output when reading, Input when writing) Input and push-pull output port can be assigned	
P0.0	SCLK	19 (20-pin) 15 (16-pin)	I	Serial clock pin (input only pin)	
RESET/P1.2	V _{PP}	4	I	Power supply pin for Tool mode entering (indicates that MTP enters into the Tool mode). When 11 V is applied, MTP is in Tool mode.	
V _{DD} /V _{SS}	V _{DD} /V _{SS}	20 (20-pin), 16 (16-pin) 1 (20-pin), 1 (16-pin)	I	Logic power supply pin.	

Table 13-1. Descriptions of Pins Used to Read/Write the Flash in Tool Program Mode
--

13.1.3 User Program Mode

This mode supports sector erase, byte programming, byte read and one protection mode (Hard Lock Protection). The S3F94C8/S3F94C4 has the internal pumping circuit to generate high voltage. To program a Flash memory in this mode several control registers will be used.

There are four kind functions in user program mode – programming, reading, sector erase, and one protection mode (Hard lock protection).

13.2 Flash Memory Control Registers, User Program Mode

13.2.1 Flash Memory Control Register

The 13.2.1 Flash Memory Control Register (FMCON) Register is available only in user program mode to select the Flash memory operation mode; sector erase, byte programming, and to make the Flash memory into a hard lock protection.

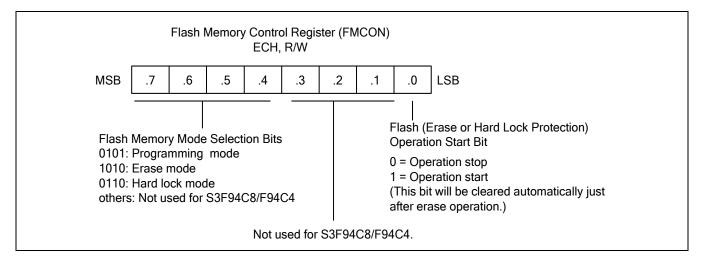
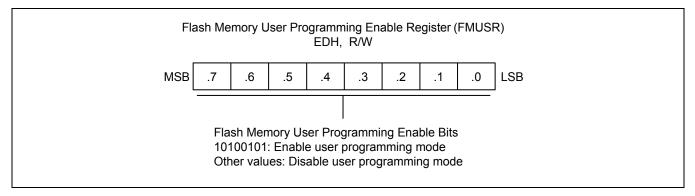


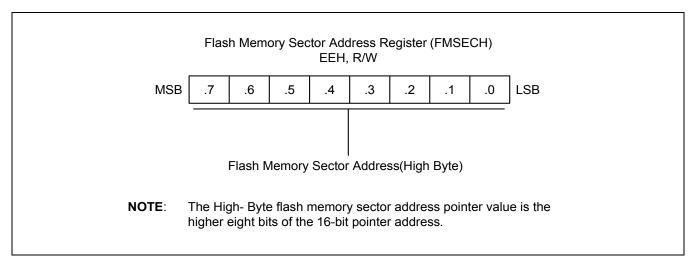
Figure 13-1. Flash Memory Control Register (FMCON)

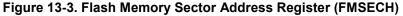
The bit 0 of FMCON register (FMCON.0) is a bit for the operation start of Erase and Hard Lock Protection. Therefore, operation of Erase and Hard Lock Protection is activated when setting FMCON.0 to 1. If you write FMCON.0 to 1 for erasing, CPU is stopped automatically for erasing time (min.4ms). After erasing time, CPU is restarted automatically. When you read or program a byte data from or into Flash memory, this bit is not needed to manipulate.

13.2.2 Flash Memory User Programming Enable Register

The 13.2.2 Flash Memory User Programming Enable (FMUSR) Register is used for a safe operation of the Flash memory. This register will protect undesired erase or program operation from malfunctioning of CPU caused by an electrical noise. After reset, the user-programming mode is disabled, because the value of FMUSR is "0000000B" by reset operation. If necessary to operate the Flash memory, you can use the user programming mode by setting the value of FMUSR to "10100101B". The other value of "10100101B", user program mode is disabled.




Figure 13-2. Flash Memory User Programming Enable Register (FMUSR)



13.2.3 Flash Memory Sector Address Registers

There are two sector address registers for the erase or programming Flash memory. The Flash Memory Sector Address Register Low Byte (FMSECL) Register indicates the low byte of the sector address, and the Flash Memory Address Sector Register High Byte (FMSECH) Register indicates the high byte of the sector address. The FMSECH is required for the S3F94C8/S3F94C4 MCUs because it has 64/32 sectors.

One sector consists of 128 bytes. Each sector's address starts XX00H or XX80H, that is, a base address of sector is XX00H or XX80H. So bit .6-.0 of FMSECL don't mean whether the value is 1 or 0. We recommend that it is the simplest way to load the sector base address into FMSECH and FMSECL register. When programming the Flash memory, user should program after loading a sector base address, which is located in the destination address to write data into FMSECH and FMSECL registers. If the next operation is also to write one byte data, user should check whether next destination address is located in the same sector or not. In case of other sectors, user should load sector address to FMSECH and FMSECL Register according to the sector. (Refer to page 13-12 PROGRAMMING TIP — Programming)

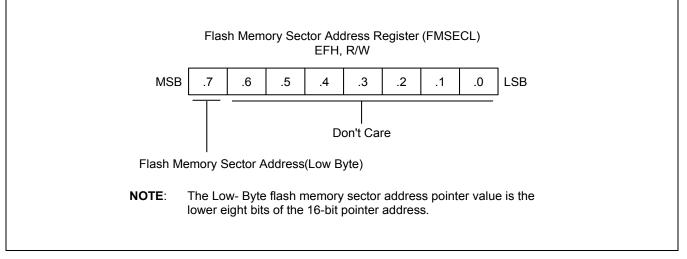


Figure 13-4. Flash Memory Sector Address Register (FMSECL)

13.3 Sector Erase

User can erase a Flash memory partially by using sector erase function only in user program mode. The only unit of Flash memory to be erased in the user program mode is a sector.

The program memory of S3F94C8/S3F94C4 8K/4KB Flash memory is divided into 64/32 sectors. Every sector has all 128-byte sizes. So the sector to be located destination address should be erased first to program a new data (one byte) into Flash memory. Minimum 4ms' delay time for the erase is required after setting sector address and triggering erase start bit (FMCON.0). Sector erase is not supported in tool program modes (MDS mode tool or programming tool).

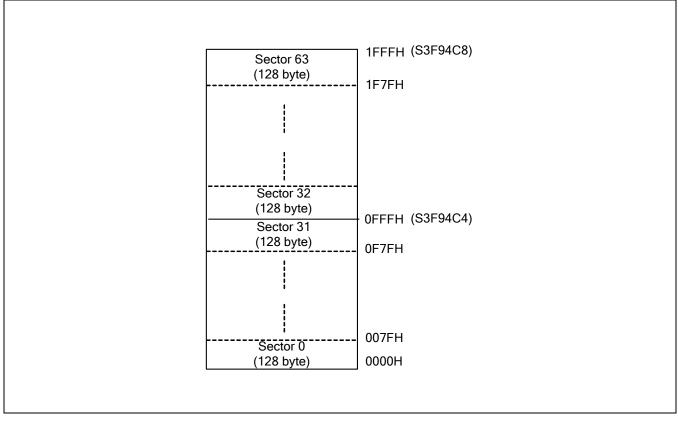


Figure 13-5. Sector Configurations in User Program Mode

The Sector Erase Procedure in User Program Mode

- 1. Set Flash Memory User Programming Enable Register (FMUSR) to "10100101B".
- 2. Set Flash Memory Sector Address Register (FMSECH and FMSECL).
- 3. Set Flash Memory Control Register (FMCON) to "10100001B".
- 4. Set Flash Memory User Programming Enable Register (FMUSR) to "00000000B".

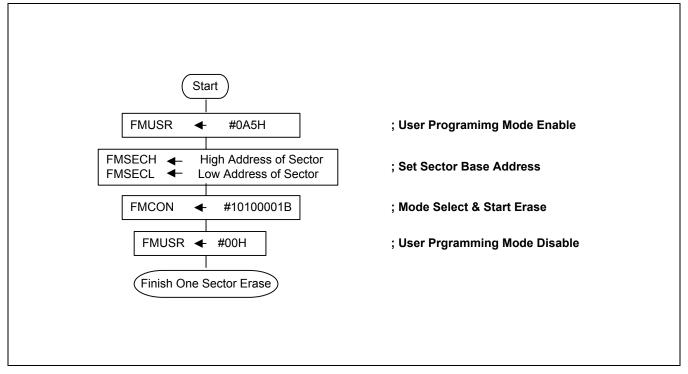


Figure 13-6. Sector Erase Flowchart in User Program Mode

NOTES

If the user erases a sector selected by Flash Memory Sector Address Register FMSECH and FMSECL, FMUSR should be enabled just before starting sector erase operation. And to erase a sector, Flash Operation Start Bit of FMCON register is written from operation stop 0 to operation start 1. That bit will be cleared automatically just after the corresponding operation completed. In other words, when S3F94C8/S3F94C4 is in the condition that Flash memory user programming enable bits is enabled and executes start operation of sector erase, it will get the result of erasing selected sector as user's purpose and Flash Operation Start Bit of FMCON register is also clear automatically.

If the user executes sector erase operation with FMUSR disabled, FMCON.0 bit, Flash Operation Start Bit, remains 'high', which means start operation, and is not cleared even though next instruction is executed. So user should be careful to set FMUSR when executing sector erase, for no effect on other Flash sectors.

PROGRAMMING TIP — Sector Erase

Case1. Erase one sector

•

ERASE_ONESECTOR:

LD	FMUSR,#0A5H	; User program mode enable
----	-------------	----------------------------

- LD FMSECH,#04H ; Set sector address 0400H, sector 8,
- LD FMSECL,#00H ; among sector 0~32
- LD FMCON,#10100001B ; Select erase mode enable & Start sector erase

ERASE_STOP:

LD FMUSR,#00H ; User program mode disable

13.4 Programming

A Flash memory is programmed in one-byte unit after sector erase. The write operation of programming starts by 'LDC' instruction.

13.4.1 Program Procedure In User Program Mode

- 1. Must erase target sectors before programming.
- 2. Set Flash Memory User Programming Enable Register (FMUSR) to "10100101B".
- 3. Set Flash Memory Control Register (FMCON) to "0101000XB".
- 4. Set Flash Memory Sector Address Register (FMSECH and FMSECL) to the sector base address of destination address to write data.
- 5. Load a transmission data into a working register.
- 6. Load a Flash memory upper address into upper register of pair working register.
- 7. Load a Flash memory lower address into lower register of pair working register.
- 8. Load transmission data to Flash memory location area on 'LDC' instruction by indirectly addressing mode
- 9. Set Flash Memory User Programming Enable Register (FMUSR) to "00000000B".

NOTE

In programming mode, it doesn't care whether the value of FMCON.0 is 0 or 1.

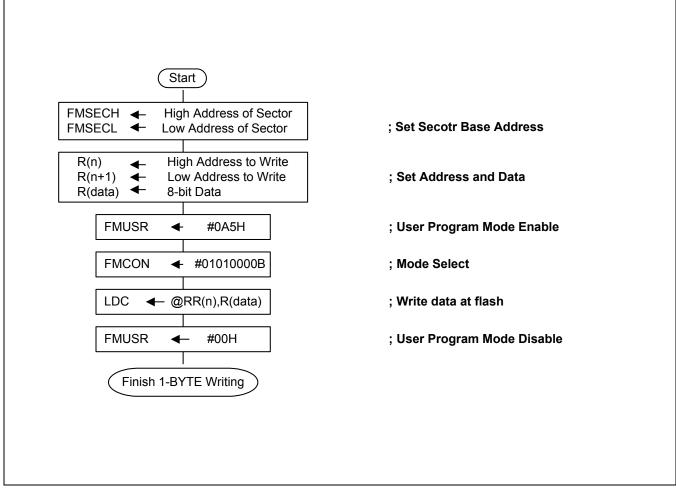


Figure 13-7. Byte Program Flowchart in a User Program Mode

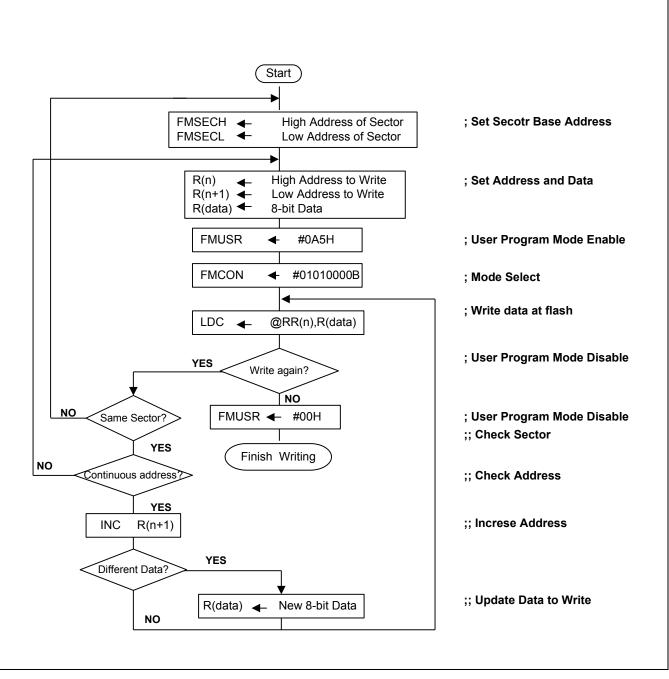


Figure 13-8. Program Flowchart in a User Program Mode

PROGRAMMING TIP — Programming

Case1. 1-Byte Programming

• WR_BYTE:		; Write data "AAH" to destination address 0310H
LD	FMUSR,#0A5H	; User program mode enable
LD	FMCON,#010100	00B ; Selection programming mode
LD	FMSECH, #03H	; Set the base address of sector (0300H)
LD	FMSECL, #00H	
LD	R9,#0AAH	; Load data "AA" to write
LD	R10,#03H	; Load Flash memory upper address into upper register of pair working
	; register	
LD	R11,#10H	; Load Flash memory lower address into lower register of pair working
	; register	
LDC	@RR10,R9	; Write data 'AAH' at Flash memory location (0310H)
LD	FMUSR,#00H	; User program mode disable
Casa? Drag	comming in the com	a aastar

Case2. Programming in the same sector

•

WR_INSECTOR: ; RR10-->Address copy (R10 – high address, R11-low address) LD R0,#40H LD FMUSR,#0A5H ; User program mode enable LD FMCON,#01010000B ; Selection programming mode and Start programming LD ; Set the base address of sector located in target address to FMSECH,#06H write data LD FMSECL,#00H ; The sector 12's base address is 0600H. LD R9,#33H ; Load data "33H" to write LD R10,#06H ; Load Flash memory upper address into upper register of pair working ; register LD R11,#00H ; Load Flash memory lower address into lower register of pair working ; register WR_BYTE: LDC@RR10,R9 ; Write data '33H' at Flash memory location INC R11 ; Reset address in the same sector by INC instruction DEC R0 JP NZ, WR_BYTE ; Check whether the end address for programming reach 0640H or not.

LD	FMUSR.#00H	: User Program mode disable

•

Case3. Programming to the Flash memory space located in other sectors

•			
•			
VVIV		R0,#40H	
	LD	R1,#40H	
	LD	K1,#4011	
	LD	FMUSR,#0A5H	; User program mode enable
	LD	FMCON,#01010000B	; Selection programming mode and Start programming
	LD	FMSECH,#01H	; Set the base address of sector located in target address to write data
	LD	FMSECL,#00H	; The sector 2's base address is 100H
	LD	R9,#0CCH	; Load data "CCH" to write
	LD	R10,#01H	; Load Flash memory upper address into upper register of pair working ; register
	LD	R11,#40H	; Load Flash memory lower address into lower register of pair working
	LD		; register
	CALL	WR_BYTE	
	LD INSEC1	R0,#40H	
V / T		FMSECH,#02H	; Set the base address of sector located in target address to write data
LD			he sector 5's base address is 0280H
LD	LD	R9,# 55H	; Load data "55H" to write
	LD	R10,#02H	; Load Gata 3511 to write ; Load Flash memory upper address into upper register of pair working
	LD	1(10,#0211	; register
	LD	R11,#90H	; Load Flash memory lower address into lower register of pair working ; register
	CALL	WR_BYTE	
VVIN		FMSECH,#06H	; Set the base address of sector located in target address to write data
	LD	FMSECL,#00H	: The sector 12's base address is 0600H
	LD	R9,#0A3H	; Load data "A3H" to write
	LD	R10,#06H	; Load Flash memory upper address into upper register of pair working
	LD	1(10,#0011	; register
	LD	R11,#40H	; Load Flash memory lower address into lower register of pair working
\\/P	BYTE1:		; register
	LDC@F		; Write data 'A3H' at Flash memory location
	INC	R11	, whice data not at hadrine hory robation
	DEC	R1	
JP		, WR_BYTE1	
01	LD	FMUSR,#00H	; User Program mode disable
•	LD		
•			
WR	BYTE:		
	LDC	@RR10,R9	; Write data written by R9 at Flash memory location
	INC	R11	
	DEC	R0	

JP NZ, WR_BYTE

RET

13.5 Reading

The read operation starts by 'LDC' instruction.

13.5.1 Program Procedure In User Program Mode

- 1. Load a Flash memory upper address into upper register of pair working register.
- 2. Load a Flash memory lower address into lower register of pair working register.
- 3. Load receive data from Flash memory location area on 'LDC' instruction by indirectly addressing mode

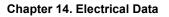
PROGRAMMING TIP — Reading

•		
•		
LD	R2,#03H	; Load Flash memory's upper address ; to upper register of pair working register
LD	R3,#00H	; Load Flash memory's lower address ; to lower register of pair working register
LOOP:		
LDC	R0,@RR2	; Read data from Flash memory location ; (Between 300H and 3FFH)
INC	R3	
CP	R3,#0FFH	
JP	NZ,LOOP	
•		
•		
•		
•		

13.6 Hard Lock Protection

User can set Hard Lock Protection by writing '0110B' in FMCON7-4. This function prevents the changes of data in a Flash memory area. If this function is enabled, the user cannot write or erase the data in a Flash memory area. This protection can be released by the chip erase execution in the tool program mode. In terms of user program mode, the procedure of setting Hard Lock Protection is following that. In Tool Mode, the manufacturer of serial tool writer could support Hardware Protection. Please refer to the manual of serial program writer tool provided by the manufacturer.

13.6.1 Program Procedure In User Program Mode


- 1. Set Flash Memory User Programming Enable Register (FMUSR) to "10100101B".
- 2. Set Flash Memory Control Register (FMCON) to "01100001B".
- 3. Set Flash Memory User Programming Enable Register (FMUSR) to "00000000B".

PROGRAMMING TIP — Hard Lock Protection

•

LD	FMUSR,#0A5H	; User program mode enable
LD	FMCON,#01100001B	; Select Hard Lock Mode and Start protection
LD	FMUSR,#00H	; User program mode disable

14 Electrical Data

14.1 Overview

In this chapter, the following S3F94C8/S3F94C4 electrical characteristics are presented in tables and graphs:

- Absolute maximum ratings
- D.C. electrical characteristics
- A.C. electrical characteristics
- Input timing measurement points
- Oscillator characteristics
- Oscillation stabilization time
- Operating voltage range
- Schmitt trigger input characteristics
- Data retention supply voltage in Stop Mode
- Stop Mode Release timing when initiated by a RESET
- A/D converter electrical characteristics
- LVR circuit characteristics
- LVR reset timing
- Full-Flash memory characteristics
- ESD Characteristics

Table 14-1. Absolute	Maximum	Ratings
----------------------	---------	---------

(T_A = 25 °C)

Parameter	Symbol	Conditions	Rating	Unit
Supply voltage	V _{DD}	-	-0.3 to + 6.5	V
Input voltage	VI	All ports	-0.3 to V _{DD} + 0.3	V
Output voltage	V _O	All output ports	-0.3 to V _{DD} + 0.3	V
Output current high	I _{ОН}	One I/O pin active	- 25	mA
		All I/O pins active	- 80	
Output current low	I _{OL}	One I/O pin active	+ 30	mA
		All I/O pins active	+ 100	
Operating temperature	Τ _Α	-	– 40 to + 85	°C
Storage temperature	T _{STG}	_	- 65 to + 150	°C

Table 14-2. DC Electrical Characteristics

 $(T_A = -40 \ ^\circ C \ to \ +85 \ ^\circ C, V_{DD} = 1.8 \ V \ to \ 5.5 \ V)$

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
Operating	V _{DD}	f _{main} =0.4 – 4 MHz		1.8	-	5.5	V
Voltage	* DD	f _{main} =0.4 – 10 MHz		2.7	_	5.5	
Main crystal or		V _{DD} = 2.7 V to 5.5V		0.4	_	10	
ceramic frequency	f _{main}	V _{DD} = 1.8 V to 2.7V		0.4	_	4	MHz
Input high voltage	V _{IH1}	Ports 0,1, 2 and RESET	V _{DD} = 1.8 to 5.5	0.8 V _{DD}	_	V_{DD}	V
	V _{IH2}	X_{IN} and X_{OUT}		V _{DD} - 0.1			
Input low voltage	V _{IL1}	Ports 0, 1, 2 and RESET	V _{DD} = 1.8 to 5.5 V	-	_	0.2 V _{DD}	V
	V _{IL2}	X_{IN} and X_{OUT}				0.1	
Output high voltage	V _{OH}	I _{OH} = – 10 mA Ports 0,2,P1.0-P1.1	V _{DD} = 4.5 to 5.5 V	V _{DD} -1.5	V _{DD} - 0.4	_	V
Output low voltage	V _{OL}	I _{OL} = 25 mA Ports 0,2,P1.0-P1.1	V _{DD} = 4.5 to 5.5 V	-	0.4	2.0	V
Input high leakage current	I _{LIH1}	All input except I _{LIH2,P1.2²}	V _{IN} = V _{DD}	_	_	1	uA
	I _{LIH2}	X _{IN}	V _{IN} = V _{DD}			20	
Input low leakage current	I _{LIL1}	All input except I _{LIL2}	V _{IN} = 0 V	-	_	-1	uA
	I _{LIL2}	X _{IN}	V _{IN} = 0 V			-20	
Output high leakage current	I _{LOH}	All output pins	V _{OUT} = V _{DD}	-	-	2	uA
Output low leakage current	I _{LOL}	All output pins	V _{OUT} = 0 V	_	_	-2	uA
Pull-up resistors	R _{P1}	V _{IN} = 0 V, Ports 0, 2, P1.0-P1.1	V _{DD} = 5 V T _A =25°C	25	50	100	kΩ
Pull-down resistors	R _{P2}	V _{IN} = 0 V, P1.0-P1.1	$V_{DD} = 5 V$ $T_A = 25^{\circ}C$	25	50	100	

Supply current ¹	I _{DD1}	Run mode 10 MHz CPU clock	V _{DD} = 4.5 to 5.5 V	-	2	5	mA
		3MHz CPU clock	V _{DD} = 2.0V		1	2	
	I _{DD2}	Idle Mode 10 MHz CPU clock	V _{DD} = 4.5 to 5.5 V	-	1.5	3.0	
		3MHz CPU clock	V _{DD} = 2.0V		0.5	1.5	
	I _{DD3}	Stop Mode	V _{DD} = 4.5 to 5.5 V (LVR disable)	-	0.3	2.0	uA
			$T_A = 25 \ ^{\circ}C$				
			V _{DD} = 4.5 to 5.5 V (LVR disable)	-	1	4.0	
			T _A = – 40°C to +85°C				
			V _{DD} = 4.5 to 5.5 V (LVR enable)	-	40	80	
			$T_A = -40^{\circ}C$ to +85°C				
			V _{DD} = 2.6 V (LVR enable)	_	30	60	
			$T_A = -40^{\circ}C$ to +85°C				

NOTE: 1. Supply current does not include current drawn through internal pull-up resistors or external output current loads and ADC module.

Table 14-3. AC Electrical Characteristics

 $(T_A = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C, V_{DD} = 1.8 \ V \ to \ 5.5 \ V)$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Interrupt input high, low width	t _{inth}	INT0, INT1 V _{DD} = 5 V ± 10 %	_	200	Ι	ns
RESET input low width	t _{RSL}	Input V _{DD} = 5 V ± 10 %	1	-	-	us

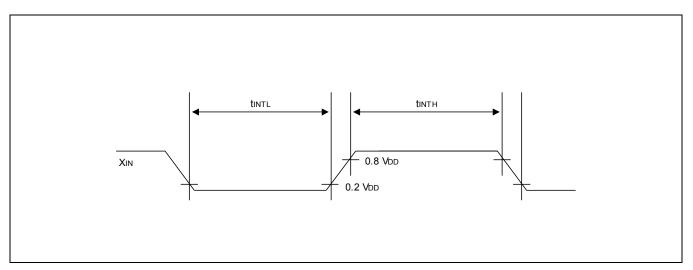


Figure 14-1. Input Timing Measurement Points

Table 14-4. Crystal or Ceramic Oscillator Characteristics

$(T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$

Oscillator	Clock Circuit	Test Condition	Min	Тур	Max	Unit
Main crystal or ceramic		V _{DD} = 2.7 to 5.5 V	0.4	_	10	MHz
		$V_{DD}^{1} = 1.8$ to 2.7 V	0.4	Ι	4	MHz
External clock (Main System)		V _{DD} = 2.7 to 5.5 V	0.4	_	10	MHz
	Хоит	V _{DD} = 1.8 to 2.7 V	0.4	-	4	MHz

NOTE: 1. Please refer to the figure of Operating Voltage Range.

Table 14-5. Oscillation Stabilization Time

 $(T_{A} = -40 \degree C \text{ to } + 85 \degree C, V_{DD} = 1.8 \text{ V to } 5.5 \text{ V})$

Oscillator	Test Condition	Min	Тур	Max	Unit
Main crystal	f _{OSC} > 1.0 MHz	_	_	20	ms
Main ceramic	Oscillation stabilization occurs when V _{DD} is equal to the minimum oscillator voltage range.	_	_	10	ms
External clock (main system)	$X_{\rm IN}$ input high and low width $(t_{\rm XH}^{},t_{\rm XL}^{})$	25	_	500	ns
Oscillator stabilization	t_{WAIT} when released by a reset $^{(1)}$	-	2 ¹⁹ /f _{OSC}	-	ms
wait time	$t_{\mbox{WAIT}}$ when released by an interrupt $^{(2)}$	_	_	_	ms

NOTES:

1. f_{OSC} is the oscillator frequency.

2. The duration of the oscillator stabilization wait time, t_{WAIT}, when it is released by an interrupt is determined by the settings in the Basic Timer Control Register, BTCON.

Table 14-6. RC Oscillator Characteristics (S3F94C8EZZ/S3F94C4EZZ)

 $(T_A = -25 \circ C \text{ to } + 85 \circ C, V_{DD} = 1.8 \text{ V} \text{ to } 5.5 \text{ V})$

External RC oscillator	_	V _{DD} = 5 V	-	4	-	MHz
Internal RC oscillator	-	-	_	3.2	_	MHz
USCIIIAIUI			_	500	_	KHz
Tolerance of Internal RC	_	V _{DD} = 5.0 V T _A = 25 °C	-	_	±3	%
		$V_{DD} = 5.0 V$ $T_A = -25^{\circ}C$ to +85 °C	_	_	±5	%
		V_{DD} = 2.0 to 5.5 V T_A = -25°C to +85 °C	-	_	±8	%

Table 14-7 RC Oscillator Characteristics (S3F94C8XZZ/S3F94C4XZZ)

 $(T_A = -40 \ ^\circ C$ to $+85 \ ^\circ C$, $V_{DD} = 1.8 \ V$ to $5.5 \ V$)

Oscillator	Clock Circuit	Test Condition	Min	Тур	Max	Unit
External RC oscillator	-	V _{DD} = 5 V	-	4	_	MHz
Internal RC oscillator	_	-	-	3.2	_	MHz
OSCIIIAIOI			_	500	_	KHz
Tolerance of Internal RC	-	V _{DD} = 1.8 to 5.0 V TA = 25 °C	_	±0.5	±1	%
		V_{DD} = 1.8 to 5.5 V T_{A} = -40°C to +85 °C	_	_	±3.5	%
		$T_A = -40^{\circ}C$ to $+85^{\circ}C$				

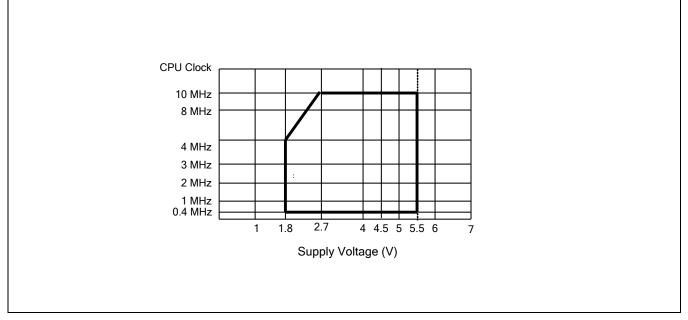


Figure 14-2. Operating Voltage Range

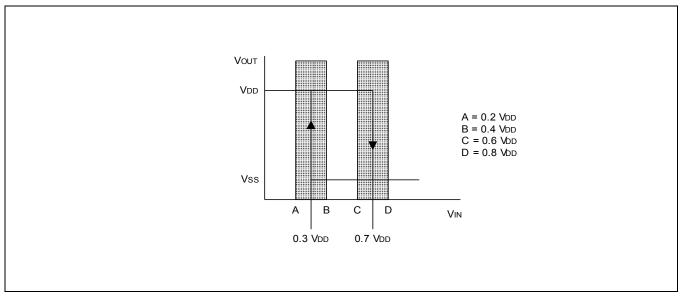


Figure 14-3. Schmitt Trigger Input Characteristics Diagram

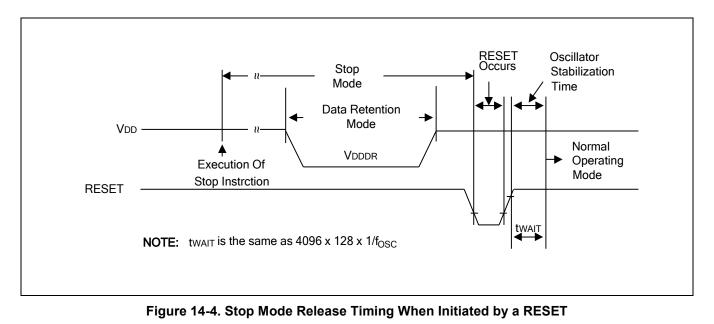


Table 14-8. Data Retention Supply Voltage in Stop Mode

 $(T_A = -40 \circ C \text{ to } + 85 \circ C, V_{DD} = 1.8 \text{ V to } 5.5 \text{ V})$

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
Data retention supply voltage	V _{DDDR}	Stop Mode	1.0	-	5.5	V
Data retention supply current	I _{DDDR}	Stop Mode; V _{DDDR =} 2.0 V	_	-	1	uA

NOTE: Supply current does not include current drawn through internal pull-up resistors or external output current loads.

Table 14-9. A/D Converter Electrical Characteristics

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Resolution			-	10	-	bit
Total accuracy		V _{DD} = 5.12 V CPU clock = 10 MHz V _{SS} = 0 V	-	_	±3 ⁽¹⁾	LSB
Integral linearity error	ILE	"	-	-	± 2	LSB
Differential linearity error	DLE	"	-	-	± 1	LSB
Offset error of top	EOT	"	-	± 1	± 3	LSB
Offset error of bottom	EOB	"	-	± 1	± 3	LSB
Conversion time ⁽²⁾	t _{CON}	"	-	20	-	μS
Analog input voltage	V _{IAN}	-	V _{SS}	-	V _{DD}	V
Analog input impedance	R _{AN}	-	2	1000	-	MΩ
Analog input current	I _{ADIN}	V _{DD} = 5 V	-	-	10	μA
Analog block current ⁽³⁾	I _{ADC}	$V_{DD} = 5 V$	-	0.5	1.5	mA
		$V_{DD} = 3 V$		0.15	0.45	mA
		$V_{DD} = 5 V$ power down mode		100	500	nA

NOTES:

1. The total accuracy is 3LSB(max.) at $V_{DD} = 2.7V - 5.5V$, It's for design guidance only and are not tested in production.

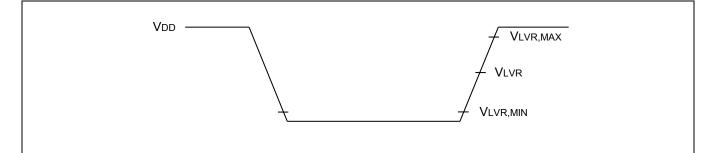

Conversion time is the time required from the moment a conversion operation starts until it ends.
 I_{ADC} is operating current during A/D conversion.

Table 14-10. LVR Circuit Characteristics

 $(T_A = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C, V_{DD} = 1.8 \ V \ to \ 5.5 \ V)$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Low voltage reset	V _{LVR}	-	1.8 2.1	1.9 2.3	2.0 2.5	V
			2.8	3.0	3.2	
			3.4 3.7	3.6 3.9	3.8 4.1	
			5.7	5.9	4.1	

Figure 14-5. LVR Reset Timing

14.2 Table 14-11. Flash Memory AC Electrical Characteristics

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Flash Erase/Write/Read Voltage	Fewrv	V _{DD}	1.8	5.0	5.5	V
Programming time(1)	Ftp		20	-	30	uS
Chip Erasing time (2)	Ftp1		32	-	70	mS
Sector Erasing time (3)	Ftp2		4	-	12	mS
Data Access Time	Ft _{RS}	V _{DD} = 2.0V	-	250	-	nS
Number of writing/erasing	FNwe	-	10,000	-	-	Times
Data Retention	Ftdr	-	10	-	-	Years

NOTES:

1. The programming time is the time during which one byte (8-bit) is programmed.

2. The Chip erasing time is the time during which entire program memory is erased.

3. The Sector erasing time is the time during which all 128byte block is erased.

4. The chip erasing is available in Tool Program Mode only.

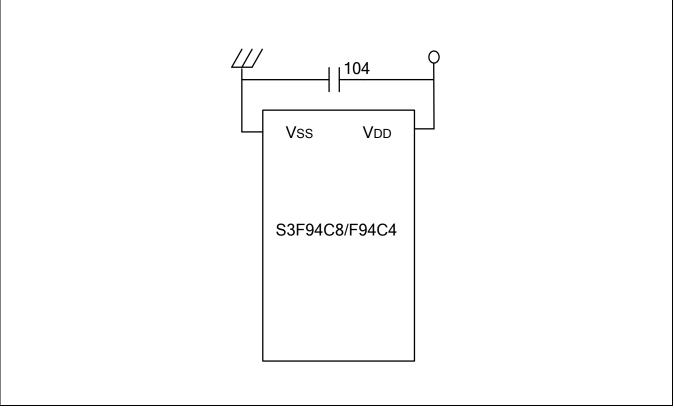


Figure 14-6. The Circuit Diagram to Improve EFT Characteristics

NOTE

To improve EFT characteristics, we recommend using power capacitor near S3F94C8/S3F94C4 like Figure 14-6.

Table 14-12. ES	D Characteristics
-----------------	-------------------

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Electrostatic discharge	V _{ESD}	HBM	2000			V
		MM	200			V
		CDM	500			V

15 Mechanical Data

The S3F94C8 and S3F94C4 MCUs are available in 20-pin DIP, 20-pin SOP, 20-pin SSOP, 16-pin SOP, and 16-pin TSSOP packages. Package dimensions are shown in Figures 15-1 through 15-6.

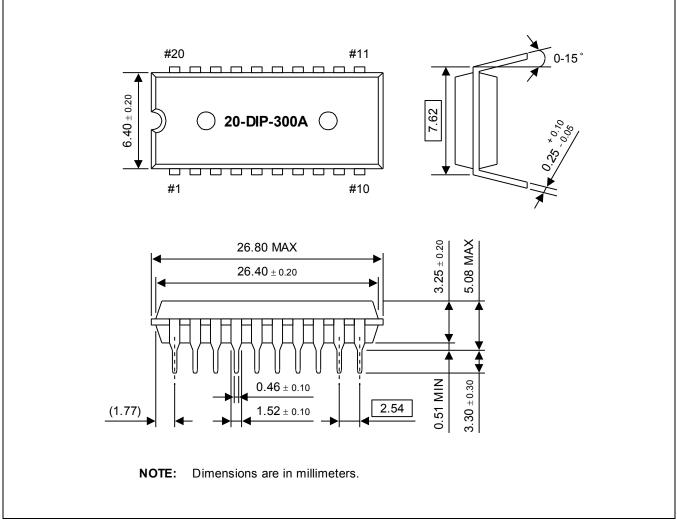


Figure 15-1. 20-DIP-300A Package Dimensions

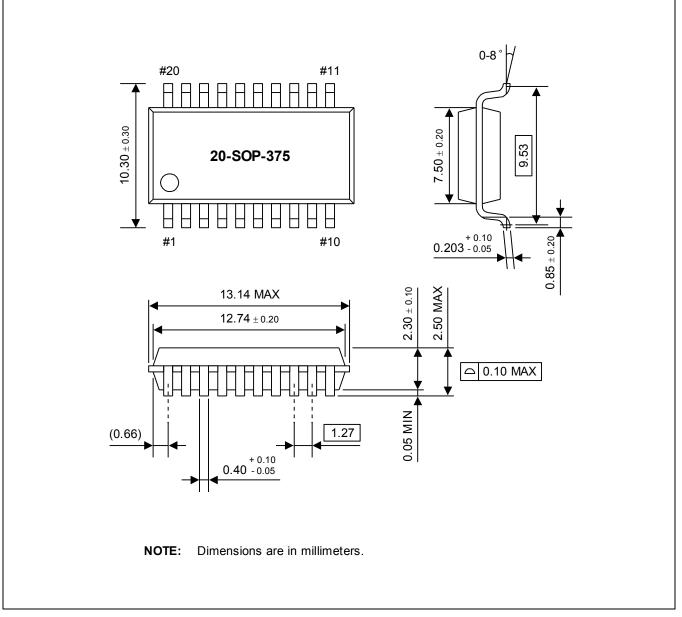


Figure 15-2. 20-SOP-375 Package Dimensions

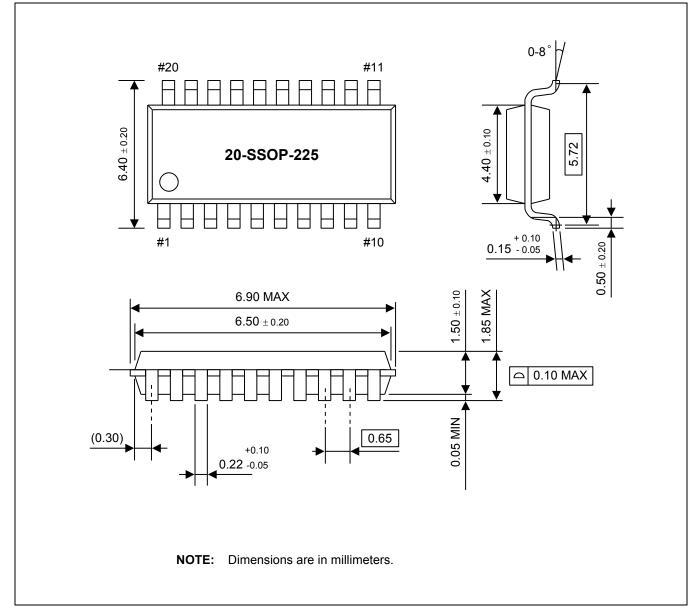


Figure 15-3. 20-SSOP-225 Package Dimensions

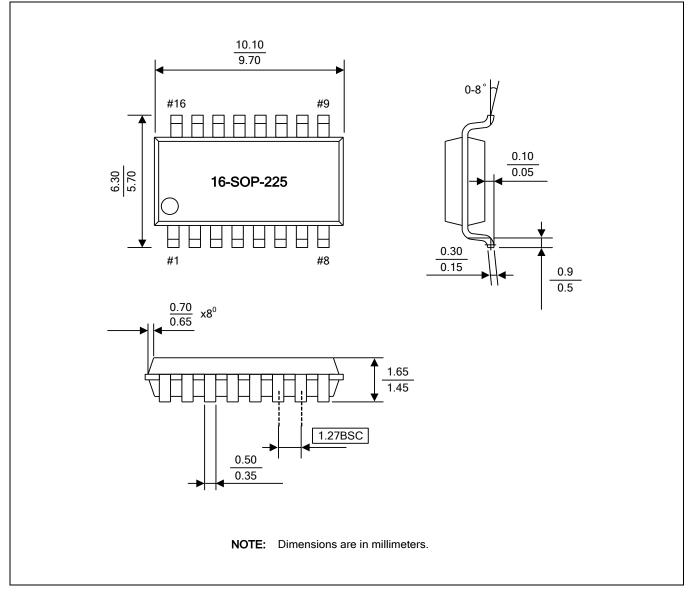


Figure 15-4. 16-SOP-225 Package Dimensions

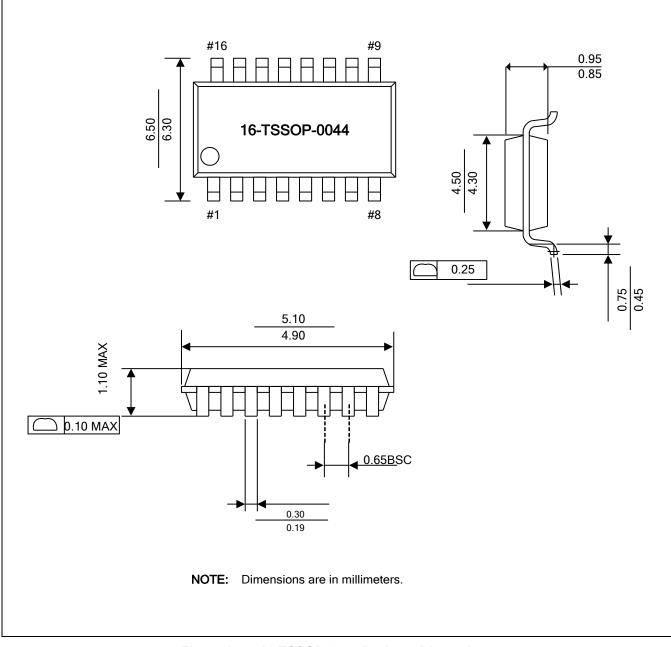


Figure 15-5. 16-TSSOP-0044 Package Dimensions

16 S3F94C8/S3F94C4 Flash MCUs

16.1 Overview

1100

The S3F94C8/S3F94C4 single-chip CMOS microcontroller is the Flash MCU. It has an on-chip Flash MCU ROM of 8K/4K bytes. The Flash ROM is accessed by serial data format.

The serial data is transformed by two pins of the chip: SCLK and SDAT, SCLK is the synchronize signal, and the Flash Programmer Tool send data from the SDAT pin. The corresponding ports of SCLK and SDAT in S3F94C8/S3F94C4 are P0.0 and P1.1. And there also need power supply for chip to work and higher power for entering Flash Tool Mode. So the VDD, VSS of chip must be connected to power and ground. The higher power supply for the Flash operation is named as VPP port, the corresponding pin in S3F94C8/S3F94C4 is nRESET (P1.2) pin. The detail description of the pin functions are listed in the table 16-1.The pin assignments of the S3F94C8/S3F94C4 package types are shown in below figures.

NOTES

- 1. This chapter is about the Tool Program Mode of Flash MCU. If you want to know the User Program Mode, refer to the chapter 13. Embedded Flash Memory Interface.
- 2. In S3F94C8/S3F94C4, there only 5 pins are used as Flash operation pins, the nRESET pin is used as VPP input and without TEST pin that different with other Zilog MCU products.

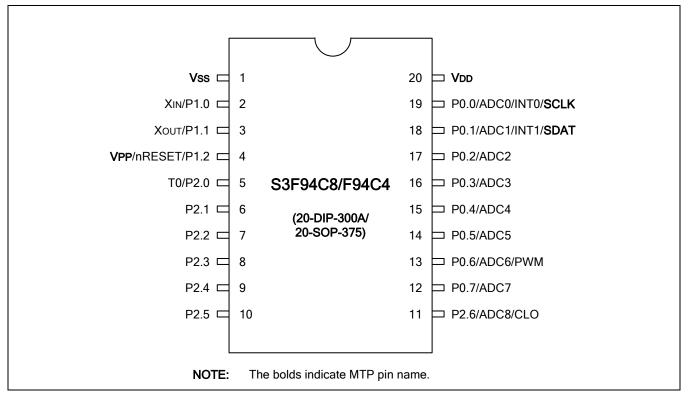


Figure 16-1. S3F94C8/S3F94C4 Pin Assignments (20-DIP/20SOP)

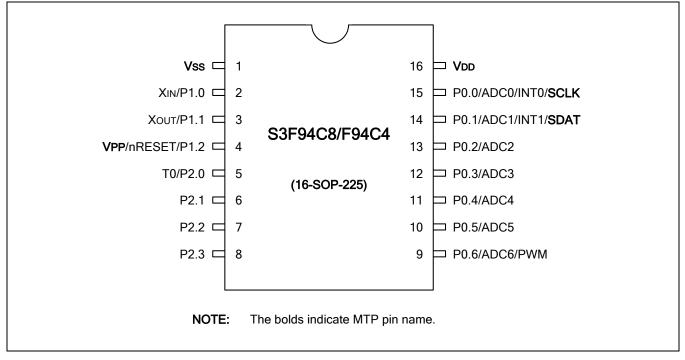


Figure 16-2. S3F94C8/S3F94C4 Pin Assignments (16SOP)

Main Chip	During Programming			
Pin Name	Pin Name	Pin No.	I/O	Function
P0.1	SDAT	18 (20-pin) 14 (16-pin)	I/O	Serial data pin (output when reading, Input when writing) Input and push-pull output port can be assigned
P0.0	SCLK	19 (20-pin) 15 (16-pin)	I	Serial clock pin (input only pin)
RESET/P1.2	V _{PP}	4	I	Power supply pin for Tool mode entering (indicates that MTP enters into the Tool mode). When 11 V is applied, MTP is in Tool mode.
V _{DD} /V _{SS}	V _{DD} /V _{SS}	20 (20-pin), 16 (16-pin) 1 (20-pin), 1 (16-pin)	I	Logic power supply pin.

Table 16-1. Descriptions of Pins Used to Read/Write the EPROM

NOTES: Parentheses indicate pin number for 20-DIP-300A package.

Table 16-2. Comparison of S3F94C8/S3F94C4 Features

Characteristic	S3F94C8/S3F94C4	
Program memory	8K/4K Flash ROM	
Operating voltage (V _{DD})	2.0 V to 5.5 V	
Flash MCU programming mode	V _{DD} = 5.0 V, V _{PP} (nRESET) = 11 V	
Pin configuration	20 DIP/20 SOP/20 SSOP/16SOP/16TSSOP	
Programmability	User program multi time	

16.2 On-Board Writing

The S3F94C8/S3F94C4 MCUs require only 5 signal lines including VDD and GND pins for writing internal Flash memory with serial protocol. Therefore the on-board writing is possible if the writing signal lines are considered when the PCB of application board is designed.

16.2.1 Circuit Design Guide

At the Flash writing, the writing tool needs 5 signal lines that are GND, VDD, VPP, SDAT and SCLK. When you design the PCB circuits, you should consider the usage of these signal lines for the on-board writing.

In case of VPP (nRESET) pin, for the purpose of increase the noise effect, a capacitor should be inserted between the VPP pin and GND.

Please be careful to design the related circuit of these signal pins because rising/falling timing of VPP, SCLK and SDAT is very important for proper programming.

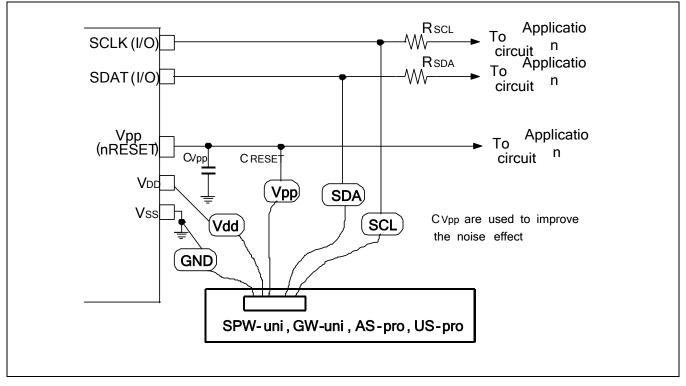


Figure 16-3. PCB Design Guide for Onboard Programming

Pin Name	I/O mode in Applications	Resistor (need)	Required value
Vpp(nRESET)	Input	Yes	C_{Vpp} is 0.01uF ~ 0.02uF.
	Input	Yes	R _{SDAT} is 2 Kohm ~ 5 Kohm.
SDAT(I/O)	Output	No(Note)	-
	Input	Yes	R_{SCLK} is 2 Kohm ~ 5 Kohm.
SCLK(I/O)	Output	No(Note)	-

Table 16-3. Reference Table for Connection

NOTES

- In on-board writing mode, very high-speed signal will be provided to pin SCLK and SDAT. And it
 will cause some damages to the application circuits connected to SCLK or SDAT port if the
 application circuit is designed as high speed response such as relay control circuit. If possible, the
 I/O configuration of SDAT, SCLK pins had better be set to input mode.
- 2. The value of R, C in this table is recommended value. It varies with circuit of system.

16.3 Information Block

The S3F94C8/94C4 provides a special Flash area for storing chip ID or customer's information into it, called information block. This block is separated from the main Flash ROM, the Flash ROM memory erase/write/read/read protection operation take none affect to this block. It can be erase/write/read by Flash Programmer Tools individually and is not available in User Mode.

The size of information block is 256Bytes. Since it is separated from Flash ROM, the programming operation (chip erase/write) will not erase/change the data in information block. User can write Chip ID into it, that different for each chip, to distinguish every chip. This is very useful for anti-imitation by storing production related information in this area.

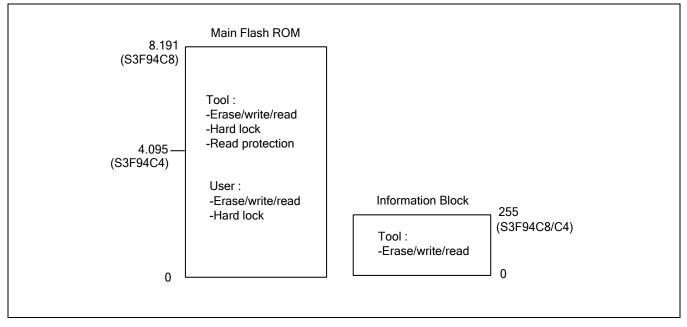


Figure 16-4. S3F94C8/S3F94C4 Flash Architecture.

Mode	Operation	Main Flash ROM	Information Block
Tool Mode	Erase MTP	Yes	No
	Program ROM/Read ROM	Yes	No
	Hard Lock/Read Protection	Yes	No
	Information Block Erase	No	Yes
	Information Block Write/Read	No	Yes
User Mode	Sector erase	Yes	No
	Write Byte/Read Byte	Yes	No
	Hard Lock	Yes	No

Table 16-4. Operation Results Comparison of Main ROM and Information Block

17 Development Tools

Zilog provides a powerful and easy-to-use development support system on a turnkey basis. This development support system is composed of a host system, debugging tools, and supporting software. Any standard computer running Windows 7 (32-/64-bit), Windows Vista (32-/64-bit), and Windows XP operating systems can be used as a host

A sophisticated debugging tool is provided both in hardware and software: the powerful in-circuit emulator, OPENice-i500 and SK-1200, for the S3C7-, S3C9- and S3C8- microcontroller families. Zilog also offers supporting software that includes, debugger, an assembler, and a program for setting options.

17.1 Target Boards

Target boards are available for all the S3C9/S3F9-series microcontrollers. All the required target system cables and adapters are included on the device-specific target board. TB94C8/94C4 is a specific target board for the development of application systems using S3F94C8/S3F94C4.

17.2 Programming Socket Adapter

When you program S3F94C8/S3F94C4 MCU Flash memory by using an emulator or OTP/MTP writer, you will require a specific programming socket adapter for these two devices.

17.2.1 Development System Configuration

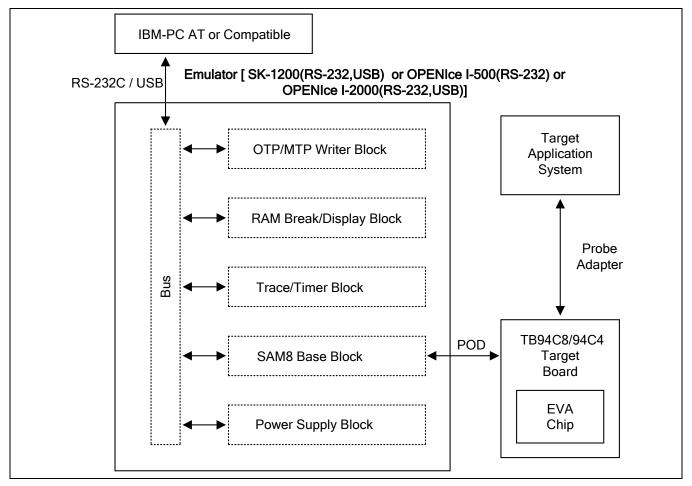


Figure 17-1. Development System Configuration

17.2.2 TB94C8/94C4 Target Board

The TB94C8/94C4 target board is used for the S3F94C8/S3F94C4 microcontrollers. The TB94C8/94C4 target board is operated as target CPU with Emulator (OPENIce I-500/2000, SK-1200).

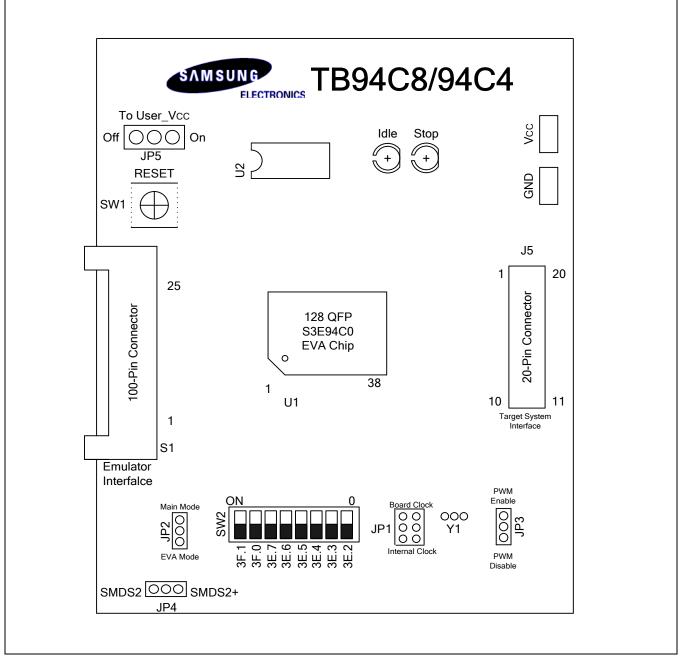
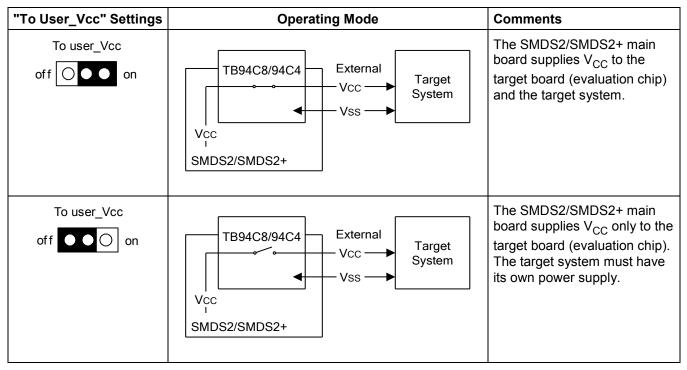


Figure 17-2. TB94C8/94C4 Target Board Configuration


NOTE

TB94C8/94C4 should be supplied 5V normally. So the power supply from Emulator should be set 5V for the target board operation.

Symbols	Usage	Description
S1	100-pin connector	Connection between emulator and TB94C8/94C4 target board.
J5	20-pin connector	Connection between target board and user application system
SW2	8-pin switch	Smart Option setting for S3F94C8/94C4 EVA-chip
RESET	Push button	Generation low active reset signal to S3F94C8/94C4 EVA-chip
VCC, GND	POWER connector	External power connector for TB94C8/94C4
IDLE, STOP LED	STOP/IDLE Display	Indicate the status of STOP or IDLE of S3F94C8/94C4 EVA-chip on TB94C8/94C4 target board
JP1	Clock Source Selection	Selection of SMDS2/SMDS2+ internal/external clock
JP2	MODE Selection	Selection of Eva/Main-chip mode of S3F94C8/94C4 EVA-chip
JP3	PWM selection	Selection of PWM enable/disable
JP4	Emulator selection	Selection of SMDS2/SMDS2+
JP5	User's Power selection	Selection of Power to User.

Table 17-1. Components of TB94C8/94C4

 Table 17-2. Power Selection Settings for TB94C8/94C4

NOTE: The following symbol in the "To User_Vcc" Setting column indicates the electrical short (off) configuration:

17.2.3 SMDS2+ Selection (SAM8)

In order to write data into program memory that is available in SMDS2+, the target board should be selected to be for SMDS2+ through a switch as follows. Otherwise, the program memory writing function is not available.

"JP4" Setting	Operating Mode
SMDS2 SMDS2+	R/W* R/W* Target SMDS2+

Table 17-3. The SMDS2+ Tool Selection Setting

Table 17-4. Using Single Header Pins to Select Clock Source/PWM/Operation Mode

Target Board Part	Comments
Board CLK JP1 Clock Source Inner CLK	Use SMDS2/SMDS2+ internal clock source as the system clock. Default Setting
Board CLK JP1 Clock Source Inner CLK	Use external crystal or ceramic oscillator as the system clock.
PWM Enable JP3 PWM Disable	PWM function is DISABLED.
PWM Enable JP3 PWM Disable	PWM function is ENABLED. Default Setting
Main Mode JP2 EVA Mode	The S3E94C0 run in main mode, just same as S3F94C8/S3F94C4. The debug interface is not available.
Main Mode JP2 EVA Mode	The S3E94C0 run in EVA mode, available. When debug program, please set the jumper in this mode. <u>Default Setting</u>

Table 17-5. Using Single Header Pins as the Input Path for External Trigger Sources

Target Board Part	Comments
External Triggers O Ch1(TP3) O Ch2(TP4)	You can connect an external trigger source to one of the two external trigger channels (CH1 or CH2) for the SK-1000/SMDS2+ breakpoint and trace functions.

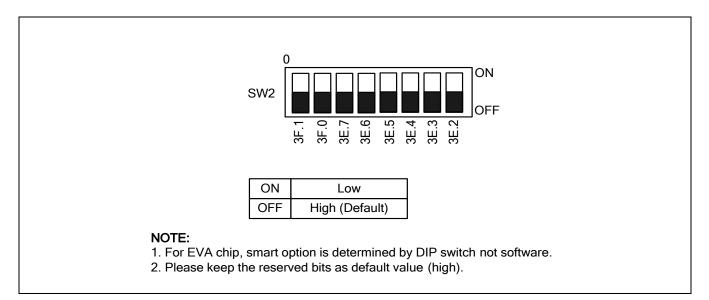


Figure 17-3. DIP Switch for Smart Option

Idle LED: This is LED is ON when the evaluation chip (S3E94C0) is in Idle Mode. Stop LED: This LED is ON when the evaluation chip (S3E94C0) is in Stop Mode.

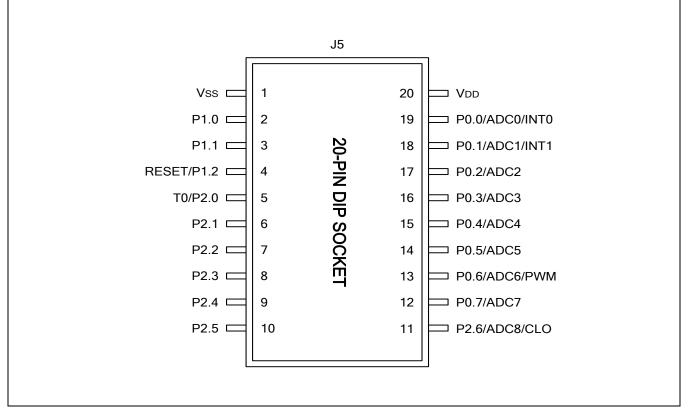


Figure 17-4. 20-Pin Connector for TB94C8/94C4

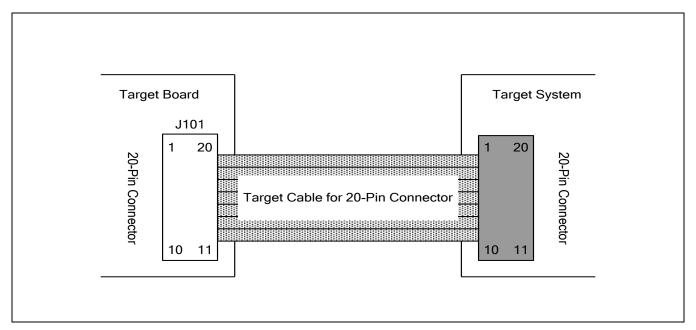


Figure 17-5. S3F94C8/S3F94C4 Probe Adapter for 20-DIP Package

17.2.4 Third Parties for Development Tools

Zilog provides a complete line of development tools that support the S3 Family of Microcontrollers. With long experience in developing MCU systems, these third party firms are bonafide leaders in MCU development tool technology.

17.2.5 In-Circuit Emulators

- OPENice-i500/2000
- SK-1200 SmartKit

17.2.6 OTP/MTP Programmers

- GW-Uni2
- AS-Pro2
- Elnec programmers

To obtain the S3 Family development tools that will satisfy your S3F80QB development objectives, contact your local <u>Zilog Sales Office</u>, or visit Zilog's <u>Third Party Tools page</u> to review our list of third party tool suppliers.